Machine Learning Models in Predicting Failure Times Data Using a Novel Version of the Maxwell Model

dc.contributor.authorPanitanarak U.
dc.contributor.authorIshaq A.I.
dc.contributor.authorSawaran Singh N.S.
dc.contributor.authorUsman A.
dc.contributor.authorUsman A.U.
dc.contributor.authorDaud H.
dc.contributor.authorAdepoju A.A.
dc.contributor.authorSadiq I.A.
dc.contributor.authorSuleiman A.A.
dc.contributor.correspondencePanitanarak U.
dc.contributor.otherMahidol University
dc.date.accessioned2025-03-09T18:24:05Z
dc.date.available2025-03-09T18:24:05Z
dc.date.issued2025-01-01
dc.description.abstractThis work aims to introduce a novel statistical distribution based on Maxwell distribution that can handle both positive and negative data sets with varying failure rates, including decreasing and bathtub-shaped distributions. The novel statistical distribution can be derived via the log transformation approach with an additional exponent parameter, defining the Transformed Log Maxwell (TLMax) distribution. The numerical investigation reveals that the developed TLMax distribution can effectively fit negative and positive data sets. A data set containing failure times for Kevlar 49/epoxy at a pressure of approximately 90% was employed to compare the proposed model against the traditional Maxwell model, and the results obtained indicated that the novel distribution outperformed the comparator. Finally, for the prediction of failure times in the dataset, we employed a machine learning model, including support vector regression (SVR), K-nearest neighbors' regression (KNN).
dc.identifier.citationEuropean Journal of Statistics Vol.5 (2025)
dc.identifier.doi10.28924/ada/stat.5.1
dc.identifier.eissn28060954
dc.identifier.scopus2-s2.0-85219034580
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/105590
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleMachine Learning Models in Predicting Failure Times Data Using a Novel Version of the Maxwell Model
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85219034580&origin=inward
oaire.citation.titleEuropean Journal of Statistics
oaire.citation.volume5
oairecerif.author.affiliationINTI International University
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationZhejiang Gongshang University
oairecerif.author.affiliationAhmadu Bello University
oairecerif.author.affiliationUniversiti Teknologi PETRONAS
oairecerif.author.affiliationAliko Dangote University of Science and Technology

Files

Collections