Evidence for particle acceleration approaching PeV energies in the W51 complex
Issued Date
2024-01-01
Resource Type
ISSN
20959273
eISSN
20959281
Scopus ID
2-s2.0-85201679997
Journal Title
Science Bulletin
Rights Holder(s)
SCOPUS
Bibliographic Citation
Science Bulletin (2024)
Suggested Citation
Cao Z., Aharonian F., Axikegu, Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Bian W., Bukevich A.V., Cao Q., Cao W.Y., Cao Z., Chang J., Chang J.F., Chen A.M., Chen E.S., Chen H.X., Chen L., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S., Chen S.H., Chen S.Z., Chen T.L., Chen Y., Cheng N., Cheng Y.D., Cui M.Y., Cui S.W., Cui X.H., Cui Y.D., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, Dong X.Q., Duan K.K., Fan J.H., Fan Y.Z., Fang J., Fang J.H., Fang K., Feng C.F., Feng H., Feng L., Feng S.H., Feng X.T., Feng Y., Feng Y.L., Gabici S., Gao B., Gao C.D., Gao Q., Gao W., Gao W.K., Ge M.M., Geng L.S., Giacinti G., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., Hasan M., He H.H., He H.N., He J.Y., He Y., Hor Y.K., Hou B.W., Hou C., Hou X., Hu H.B., Hu Q., Hu S.C., Huang D.H., Huang T.Q., Huang W.J., Huang X.T., Huang X.Y., Huang Y., Ji X.L., Jia H.Y., Jia K., Jiang K., Jiang X.W., Jiang Z.J., Jin M., Kang M.M., Karpikov I., Kuleshov D., Kurinov K., Li B.B. Evidence for particle acceleration approaching PeV energies in the W51 complex. Science Bulletin (2024). doi:10.1016/j.scib.2024.07.017 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/100696
Title
Evidence for particle acceleration approaching PeV energies in the W51 complex
Author(s)
Cao Z.
Aharonian F.
Axikegu
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Bian W.
Bukevich A.V.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen H.X.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng N.
Cheng Y.D.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang J.H.
Fang K.
Feng C.F.
Feng H.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
Hasan M.
He H.H.
He H.N.
He J.Y.
He Y.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang X.W.
Jiang Z.J.
Jin M.
Kang M.M.
Karpikov I.
Kuleshov D.
Kurinov K.
Li B.B.
Aharonian F.
Axikegu
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Bian W.
Bukevich A.V.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen H.X.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng N.
Cheng Y.D.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang J.H.
Fang K.
Feng C.F.
Feng H.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
Hasan M.
He H.H.
He H.N.
He J.Y.
He Y.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang X.W.
Jiang Z.J.
Jin M.
Kang M.M.
Karpikov I.
Kuleshov D.
Kurinov K.
Li B.B.
Author's Affiliation
Zhejiang Lab
State Key Laboratory of Particle Detection & Electronics
Université Paris Cité
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
China Center of Advanced Science and Technology World Laboratory
Purple Mountain Observatory Chinese Academy of Sciences
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
State Key Laboratory of Particle Detection & Electronics
Université Paris Cité
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
China Center of Advanced Science and Technology World Laboratory
Purple Mountain Observatory Chinese Academy of Sciences
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Corresponding Author(s)
Other Contributor(s)
Abstract
The γ-ray emission from the W51 complex is widely acknowledged to be attributed to the interaction between the cosmic rays (CRs) accelerated by the shock of supernova remnant (SNR) W51C and the dense molecular clouds in the adjacent star-forming region, W51B. However, the maximum acceleration capability of W51C for CRs remains elusive. Based on observations conducted with the Large High Altitude Air Shower Observatory (LHAASO), we report a significant detection of γ rays emanating from the W51 complex, with energies from 2 to 200 TeV. The LHAASO measurements, for the first time, extend the γ-ray emission from the W51 complex beyond 100 TeV and reveal a significant spectrum bending at tens of TeV. By combining the “π0-decay bump” featured data from Fermi-LAT, the broadband γ-ray spectrum of the W51 region can be well-characterized by a simple pp-collision model. The observed spectral bending feature suggests an exponential cutoff at ∼400 TeV or a power-law break at ∼200 TeV in the CR proton spectrum, most likely providing the first evidence of SNRs serving as CR accelerators approaching the PeV regime. Additionally, two young star clusters within W51B could also be theoretically viable to produce the most energetic γ rays observed by LHAASO. Our findings strongly support the presence of extreme CR accelerators within the W51 complex and provide new insights into the origin of Galactic CRs.