Botnet Detection by Integrating Multiple Machine Learning Models

dc.contributor.authorTejapijaya T.
dc.contributor.authorSiritanawan P.
dc.contributor.authorSumongkayothin K.
dc.contributor.authorKotani K.
dc.contributor.correspondenceTejapijaya T.
dc.contributor.otherMahidol University
dc.date.accessioned2024-04-28T18:24:35Z
dc.date.available2024-04-28T18:24:35Z
dc.date.issued2024-01-01
dc.description.abstractBotnets are persistent and adaptable cybersecurity threats, displaying diverse behaviors orchestrated by various attacker groups. Their ability to operate stealthily on a massive scale poses challenges to conventional security monitoring systems like Security Information and Event Management (SIEM). In this study, we propose an integrated machine learning method to effectively identify botnet activities under different scenarios. Our approach involves using Shannon entropy for feature extraction, training individual models using random forest, and integrating them in various ways. To evaluate the effectiveness of our methodology, we compare various integrating strategies. The evaluation is conducted using unseen network traffic data, achieving a remarkable reduction in false negatives by our proposed method. The results demonstrate the potential of our integrating method to detect different botnet behaviors, enhancing cybersecurity defense against this notorious threat.
dc.identifier.citationInternational Conference on Information Systems Security and Privacy Vol.1 (2024) , 358-365
dc.identifier.doi10.5220/0012317700003648
dc.identifier.eissn21844356
dc.identifier.scopus2-s2.0-85190849157
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/98132
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.titleBotnet Detection by Integrating Multiple Machine Learning Models
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85190849157&origin=inward
oaire.citation.endPage365
oaire.citation.startPage358
oaire.citation.titleInternational Conference on Information Systems Security and Privacy
oaire.citation.volume1
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationJapan Advanced Institute of Science and Technology

Files

Collections