Mechanistic insights into levan elongation by levansucrase from phytobacteria Erwinia tasmaniensis for tailored levan biosynthesis

dc.contributor.authorCharoenwongpaiboon T.
dc.contributor.authorBenini S.
dc.contributor.authorField R.A.
dc.contributor.authorKlaewkla M.
dc.contributor.authorLorthongpanich C.
dc.contributor.authorPongsawasdi P.
dc.contributor.authorPichyangkura R.
dc.contributor.authorWangpaiboon K.
dc.contributor.correspondenceCharoenwongpaiboon T.
dc.contributor.otherMahidol University
dc.date.accessioned2026-02-06T18:21:07Z
dc.date.available2026-02-06T18:21:07Z
dc.date.issued2026-02-01
dc.description.abstractLevansucrase catalyzes the polymerization of fructose units from sucrose into a β-2,6-linked fructan called “Levan”, which are versatile in many applications. While levansucrases from Gram-positive bacteria have well-characterized levan-binding track, the molecular basis for levan elongation by Gram-negative bacteria enzymes remains unclear. Here, we integrated rational mutagenesis, biochemical assays, and molecular dynamics (MD) simulations to elucidate the levan-binding architecture of levansucrease from the Gram-negative bacteria Erwinia tasmaniensis ( Et Lsc). Using surface topology and residue-frequency mapping, we identified three potential carbohydrate-binding tracks. Alanine scanning of 19 residues revealed that mutations in a distinct surface loop (track II) significantly decreased levan production, particularly F376A, which also abolished gel retention in levan-affinity PAGE. MD simulations proposed strong interactions between levan oligosaccharide and residues F376 and F349, and highlighted a conformational change within the 368–378 loop upon substrate binding. Interestingly, mutations in a second region (track III) selectively altered the product spectrum of β-2,1 fructooligosaccharides and promote levan biosynthesis, suggesting a dual-track model for fructan synthesis. Taken together, the results reveal a unique elongation mechanism in Gram-negative bacteria levansucrases that diverges from that of enzymes from Gram-positive bacteria. These findings provide a structural framework for engineering levansucrases with tunable product profiles for carbohydrate biotechnology applications.
dc.identifier.citationCarbohydrate Polymers Vol.373 (2026)
dc.identifier.doi10.1016/j.carbpol.2025.124616
dc.identifier.eissn18791344
dc.identifier.issn01448617
dc.identifier.pmid41320395
dc.identifier.scopus2-s2.0-105020931528
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/114571
dc.rights.holderSCOPUS
dc.subjectMaterials Science
dc.subjectChemistry
dc.titleMechanistic insights into levan elongation by levansucrase from phytobacteria Erwinia tasmaniensis for tailored levan biosynthesis
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105020931528&origin=inward
oaire.citation.titleCarbohydrate Polymers
oaire.citation.volume373
oairecerif.author.affiliationChulalongkorn University
oairecerif.author.affiliationUniversity of East Anglia
oairecerif.author.affiliationSiriraj Hospital
oairecerif.author.affiliationFree University of Bozen-Bolzano
oairecerif.author.affiliationSilpakorn University
oairecerif.author.affiliationIndependent Researcher

Files

Collections