Simulation study on cosmic ray shower rate variations with LHAASO-KM2A during thunderstorms
Issued Date
2024-09-27
Resource Type
eISSN
18248039
Scopus ID
2-s2.0-85212274833
Journal Title
Proceedings of Science
Volume
444
Rights Holder(s)
SCOPUS
Bibliographic Citation
Proceedings of Science Vol.444 (2024)
Suggested Citation
Yang C., Zhou X., Chen X., Huang D., Cao Z., Aharonian F., An Q., Axikegu, Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Cai J.T., Cao Q., Cao W.Y., Cao Z., Chang J., Chang J.F., Chen A.M., Chen E.S., Chen L., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S.H., Chen S.Z., Chen T.L., Chen Y., Cheng N., Cheng Y.D., Cui M.Y., Cui S.W., Cui X.H., Cui Y.D., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, della Volpe D., Dong X.Q., Duan K.K., Fan J.H., Fan Y.Z., Fang J., Fang K., Feng C.F., Feng L., Feng S.H., Feng X.T., Feng Y.L., Gabici S., Gao B., Gao C.D., Gao L.Q., Gao Q., Gao W., Gao W.K., Ge M.M., Geng L.S., Giacinti G., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., He H.H., He H.N., He J.Y., He X.B., He Y., Heller M., Hor Y.K., Hou B.W., Hou C., Hou X., Hu H.B., Hu Q., Hu S.C., Huang D.H., Huang T.Q., Huang W.J., Huang X.T., Huang X.Y., Huang Y., Huang Z.C., Ji X.L., Jia H.Y., Jia K., Jiang K., Jiang X.W., Jiang Z.J., Jin M., Kang M.M., Ke T. Simulation study on cosmic ray shower rate variations with LHAASO-KM2A during thunderstorms. Proceedings of Science Vol.444 (2024). Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/102500
Title
Simulation study on cosmic ray shower rate variations with LHAASO-KM2A during thunderstorms
Author(s)
Yang C.
Zhou X.
Chen X.
Huang D.
Cao Z.
Aharonian F.
An Q.
Axikegu
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai J.T.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng N.
Cheng Y.D.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
della Volpe D.
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He J.Y.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Z.C.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang X.W.
Jiang Z.J.
Jin M.
Kang M.M.
Ke T.
Zhou X.
Chen X.
Huang D.
Cao Z.
Aharonian F.
An Q.
Axikegu
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai J.T.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng N.
Cheng Y.D.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
della Volpe D.
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He J.Y.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Z.C.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang X.W.
Jiang Z.J.
Jin M.
Kang M.M.
Ke T.
Author's Affiliation
State Key Laboratory of Particle Detection & Electronics
Université Paris Cité
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Université Paris Cité
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Corresponding Author(s)
Other Contributor(s)
Abstract
The Large High Altitude Air Shower Observatory (LHAASO) has three sub-arrays, KM2A, WCDA, and WFCTA. As the major array of LHAASO, KM2A has been operating stably in shower mode. To study the near-earth atmospheric electric field (AEF) effect on the trigger event rate during thunderstorms, Monte Carlo simulations are performed with CORSIKA and G4KM2A. According to the simulations, the shower rate variations are found to be strongly dependent on the strength and polarity of the AEF. The shower rates increase with the field intensity. In positive AEF (defined as the direction pointing towards the ground), the increased amplitude is less than that in negative AEF. With the same field strength 1000 V/cm, the value exceeds 12% in a negative field, and merely is up to 6% in the positive one. The dependence of the trigger rate variation on the thickness of the AEF layer is also simulated. The shower event rate increases dramatically at small thickness, and then the trend of variation slows down with the AEF layer thickness. This indicates that the AEF with larger layer thickness has more deflection effects on the development of an extensive air shower. The shower rate variations are also found to be dependent on the primary zenith angle. Our simulation results could be useful in understanding the variation of trigger rate detected by LHAASO-KM2A during thunderstorms.