Self-calibration of LHAASO-KM2A electromagnetic particle detectors using single particles within extensive air showers
Issued Date
2022-12-15
Resource Type
ISSN
24700010
eISSN
24700029
Scopus ID
2-s2.0-85144764013
Journal Title
Physical Review D
Volume
106
Issue
12
Rights Holder(s)
SCOPUS
Bibliographic Citation
Physical Review D Vol.106 No.12 (2022)
Suggested Citation
Aharonian F., An Q., Axikegu, Bai L.X., Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Cai J.T., Cao Z., Cao Z., Chang J., Chang J.F., Chen E.S., Chen L., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S.H., Chen S.Z., Chen T.L., Chen Y., Cheng H.L., Cheng N., Cheng Y.D., Cui S.W., Cui X.H., Cui Y.D., D'Ettorre Piazzoli B., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, Della Volpe D., Duan K.K., Fan J.H., Fan Y.Z., Fan Z.X., Fang J., Fang K., Feng C.F., Feng L., Feng S.H., Feng X.T., Feng Y.L., Gao B., Gao C.D., Gao L.Q., Gao Q., Gao W., Gao W.K., Ge M.M., Geng L.S., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo J.G., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., He H.H., He H.N., He S.L., He X.B., He Y., Heller M., Hor Y.K., Hou C., Hou X., Hu H.B., Hu Q., Hu S., Hu S.C., Hu X.J., Huang D.H., Huang W.H., Huang X.T., Huang X.Y., Huang Y., Huang Z.C., Ji X.L., Jia H.Y., Jia K., Jiang K., Jiang Z.J., Jin M., Kang M.M., Ke T., Kuleshov D., Levochkin K., Li B.B., Li C., Li C., Li F., Li H.B. Self-calibration of LHAASO-KM2A electromagnetic particle detectors using single particles within extensive air showers. Physical Review D Vol.106 No.12 (2022). doi:10.1103/PhysRevD.106.122004 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/86903
Title
Self-calibration of LHAASO-KM2A electromagnetic particle detectors using single particles within extensive air showers
Author(s)
Aharonian F.
An Q.
Axikegu
Bai L.X.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai J.T.
Cao Z.
Cao Z.
Chang J.
Chang J.F.
Chen E.S.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng H.L.
Cheng N.
Cheng Y.D.
Cui S.W.
Cui X.H.
Cui Y.D.
D'Ettorre Piazzoli B.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Della Volpe D.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fan Z.X.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.L.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.G.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He S.L.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.
Hu S.C.
Hu X.J.
Huang D.H.
Huang W.H.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Z.C.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang Z.J.
Jin M.
Kang M.M.
Ke T.
Kuleshov D.
Levochkin K.
Li B.B.
Li C.
Li C.
Li F.
Li H.B.
An Q.
Axikegu
Bai L.X.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai J.T.
Cao Z.
Cao Z.
Chang J.
Chang J.F.
Chen E.S.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng H.L.
Cheng N.
Cheng Y.D.
Cui S.W.
Cui X.H.
Cui Y.D.
D'Ettorre Piazzoli B.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Della Volpe D.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fan Z.X.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.L.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.G.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He S.L.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.
Hu S.C.
Hu X.J.
Huang D.H.
Huang W.H.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Z.C.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang Z.J.
Jin M.
Kang M.M.
Ke T.
Kuleshov D.
Levochkin K.
Li B.B.
Li C.
Li C.
Li F.
Li H.B.
Author's Affiliation
State Key Laboratory of Particle Detection & Electronics
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics Chinese Academy of Science
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Università degli Studi di Napoli Federico II
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics Chinese Academy of Science
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Università degli Studi di Napoli Federico II
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Other Contributor(s)
Abstract
In the Large High Altitude Air Shower Observatory (LHAASO), the square kilometer array, with 5249 electromagnetic particle detectors (EDs) and 1188 muon detectors, is deployed to explore the gamma-ray sources above 30 TeV with unprecedented sensitivity and to measure primary cosmic rays in the energy range from 10 TeV to 100 PeV. The energetic particles produced by extensive air showers can serve as a continuously available source for calibration of the numerous EDs over a large area. In this study, the detector untriggered probability is first proposed to estimate the particle density at different distances from the shower core and distinguish the characteristic single-particle signal detected by each ED. This method uses science data directly, and does not require prior knowledge of the cosmic-ray elemental composition or hadronic interaction model. Experimental results show that this self-calibration can be used to determine the number of particles detected by each ED with an accuracy better than 2% within a time scale of hours, which is adequate to meet the physics requirements of the LHAASO experiment. With this high efficiency and accuracy, this calibration also provides an ideal method to monitor the detector performance throughout an expected lifetime of >10 years.