Facilitating Safe Discharge Through Predicting Disease Progression in Moderate Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study to Develop and Validate a Clinical Prediction Model in Resource-Limited Settings

dc.contributor.authorChandna A.
dc.contributor.authorMahajan R.
dc.contributor.authorGautam P.
dc.contributor.authorMwandigha L.
dc.contributor.authorGunasekaran K.
dc.contributor.authorBhusan D.
dc.contributor.authorCheung A.T.L.
dc.contributor.authorDay N.
dc.contributor.authorDittrich S.
dc.contributor.authorDondorp A.
dc.contributor.authorGeevar T.
dc.contributor.authorGhattamaneni S.R.
dc.contributor.authorHussain S.
dc.contributor.authorJimenez C.
dc.contributor.authorKarthikeyan R.
dc.contributor.authorKumar S.
dc.contributor.authorKumar S.
dc.contributor.authorKumar V.
dc.contributor.authorKundu D.
dc.contributor.authorLakshmanan A.
dc.contributor.authorManesh A.
dc.contributor.authorMenggred C.
dc.contributor.authorMoorthy M.
dc.contributor.authorOsborn J.
dc.contributor.authorRichard-Greenblatt M.
dc.contributor.authorSharma S.
dc.contributor.authorSingh V.K.
dc.contributor.authorSingh V.K.
dc.contributor.authorSuri J.
dc.contributor.authorSuzuki S.
dc.contributor.authorTubprasert J.
dc.contributor.authorTurner P.
dc.contributor.authorVillanueva A.M.G.
dc.contributor.authorWaithira N.
dc.contributor.authorKumar P.
dc.contributor.authorVarghese G.M.
dc.contributor.authorKoshiaris C.
dc.contributor.authorLubell Y.
dc.contributor.authorBurza S.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-20T05:28:53Z
dc.date.available2023-06-20T05:28:53Z
dc.date.issued2022-07-01
dc.description.abstractBackground: In locations where few people have received coronavirus disease 2019 (COVID-19) vaccines, health systems remain vulnerable to surges in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections. Tools to identify patients suitable for community-based management are urgently needed. Methods: We prospectively recruited adults presenting to 2 hospitals in India with moderate symptoms of laboratory-confirmed COVID-19 to develop and validate a clinical prediction model to rule out progression to supplemental oxygen requirement. The primary outcome was defined as any of the following: SpO2<94%; respiratory rate>30 BPM; SpO2/FiO2<400; or death. We specified a priori that each model would contain three clinical parameters (age, sex, and SpO2) and 1 of 7 shortlisted biochemical biomarkers measurable using commercially available rapid tests (C-reactive protein [CRP], D-dimer, interleukin 6 [IL-6], neutrophil-to-lymphocyte ratio [NLR], procalcitonin [PCT], soluble triggering receptor expressed on myeloid cell-1 [sTREM-1], or soluble urokinase plasminogen activator receptor [suPAR]), to ensure the models would be suitable for resource-limited settings. We evaluated discrimination, calibration, and clinical utility of the models in a held-out temporal external validation cohort. Results: In total, 426 participants were recruited, of whom 89 (21.0%) met the primary outcome; 257 participants comprised the development cohort, and 166 comprised the validation cohort. The 3 models containing NLR, suPAR, or IL-6 demonstrated promising discrimination (c-statistics: 0.72-0.74) and calibration (calibration slopes: 1.01-1.05) in the validation cohort and provided greater utility than a model containing the clinical parameters alone. Conclusions: We present 3 clinical prediction models that could help clinicians identify patients with moderate COVID-19 suitable for community-based management. The models are readily implementable and of particular relevance for locations with limited resources.
dc.identifier.citationClinical Infectious Diseases Vol.75 No.1 (2022) , E368-E379
dc.identifier.doi10.1093/cid/ciac224
dc.identifier.eissn15376591
dc.identifier.issn10584838
dc.identifier.pmid35323932
dc.identifier.scopus2-s2.0-85137125570
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/87278
dc.rights.holderSCOPUS
dc.subjectMedicine
dc.titleFacilitating Safe Discharge Through Predicting Disease Progression in Moderate Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study to Develop and Validate a Clinical Prediction Model in Resource-Limited Settings
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85137125570&origin=inward
oaire.citation.endPageE379
oaire.citation.issue1
oaire.citation.startPageE368
oaire.citation.titleClinical Infectious Diseases
oaire.citation.volume75
oairecerif.author.affiliationAngkor Hospital for Children
oairecerif.author.affiliationAll India Institute of Medical Sciences, Patna
oairecerif.author.affiliationRajendra Memorial Research Institute of Medical Sciences
oairecerif.author.affiliationLondon School of Hygiene &amp; Tropical Medicine
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationNagasaki University
oairecerif.author.affiliationNuffield Department of Medicine
oairecerif.author.affiliationMedecins Sans Frontieres
oairecerif.author.affiliationUniversity of Pennsylvania Perelman School of Medicine
oairecerif.author.affiliationUniversity of Oxford Medical Sciences Division
oairecerif.author.affiliationChristian Medical College, Vellore
oairecerif.author.affiliationFoundation for Innovative Diagnostics

Files

Collections