MANORAA: A machine learning platform to guide protein-ligand design by anchors and influential distances

dc.contributor.authorTanramluk D.
dc.contributor.authorPakotiprapha D.
dc.contributor.authorPhoochaijaroen S.
dc.contributor.authorChantravisut P.
dc.contributor.authorThampradid S.
dc.contributor.authorVanichtanankul J.
dc.contributor.authorNarupiyakul L.
dc.contributor.authorAkavipat R.
dc.contributor.authorYuvaniyama J.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T16:49:33Z
dc.date.available2023-06-18T16:49:33Z
dc.date.issued2022-01-06
dc.description.abstractThe MANORAA platform uses structure-based approaches to provide information on drug design originally derived from mapping tens of thousands of amino acids on a grid. In-depth analyses of the pockets, frequently occurring atoms, influential distances, and active-site boundaries are used for the analysis of active sites. The algorithms derived provide model equations that can predict whether changes in distances, such as contraction or expansion, will result in improved binding affinity. The algorithm is confirmed using kinetic studies of dihydrofolate reductase (DHFR), together with two DHFR-TS crystal structures. Empirical analyses of 881 crystal structures involving 180 ligands are used to interpret protein-ligand binding affinities. MANORAA links to major biological databases for web-based analysis of drug design. The frequency of atoms inside the main protease structures, including those from SARS-CoV-2, shows how the rigid part of the ligand can be used as a probe for molecular design (http://manoraa.org).
dc.identifier.citationStructure Vol.30 No.1 (2022) , 181-189.e5
dc.identifier.doi10.1016/j.str.2021.09.004
dc.identifier.eissn18784186
dc.identifier.issn09692126
dc.identifier.pmid34614393
dc.identifier.scopus2-s2.0-85121985779
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/83859
dc.rights.holderSCOPUS
dc.subjectBiochemistry, Genetics and Molecular Biology
dc.titleMANORAA: A machine learning platform to guide protein-ligand design by anchors and influential distances
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85121985779&origin=inward
oaire.citation.endPage189.e5
oaire.citation.issue1
oaire.citation.startPage181
oaire.citation.titleStructure
oaire.citation.volume30
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationThailand National Center for Genetic Engineering and Biotechnology
oairecerif.author.affiliationInstitute of Molecular Biosciences, Mahidol University

Files

Collections