Integrating bioprinted oral epithelium with millifluidics for fluorouracil perfusion and Fusobacterium infection to bioengineer oral mucositis-on-a-chip
Issued Date
2025-03-01
Resource Type
eISSN
26661381
Scopus ID
2-s2.0-85218427928
Journal Title
Engineered Regeneration
Volume
6
Issue
1
Start Page
1
End Page
16
Rights Holder(s)
SCOPUS
Bibliographic Citation
Engineered Regeneration Vol.6 No.1 (2025) , 1-16
Suggested Citation
Truong T.T.T., Phan T.V., Oo Y., Sariya L., Chaisuparat R., Scaglione S., Souza G.R., Yodmuang S., Hong C.H.L., Tan K.S., Phoolcharoen W., Matangkasombut O., Ferreira J.N. Integrating bioprinted oral epithelium with millifluidics for fluorouracil perfusion and Fusobacterium infection to bioengineer oral mucositis-on-a-chip. Engineered Regeneration Vol.6 No.1 (2025) , 1-16. 16. doi:10.1016/j.engreg.2025.02.001 Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/105487
Title
Integrating bioprinted oral epithelium with millifluidics for fluorouracil perfusion and Fusobacterium infection to bioengineer oral mucositis-on-a-chip
Corresponding Author(s)
Other Contributor(s)
Abstract
Oral mucositis (OM) remains a painful complication of anticancer chemotherapy (CT), tending to progress in severity in the presence of Fusobacterium nucleatum (Fn). Yet, no effective therapy exists to suppress OM since in vitro models mimicking CT-induced OM are lacking, halting the discovery of new drugs. Here, we developed an integrated millifluidic in vitro tissue culture system for OM disease modeling. This bioengineered system integrates magnetically bioassembled oral epithelium sheets with millifluidics for CT-based 5-fluorouracil perfusion and Fn infection to model CT-induced OM. After modeling OM with all pro-inflammatory hallmarks, we were able to suppress OM with our in-house plant-produced epidermal growth factor (P-EGF), a well-known re-epithelialization cue. Thus, this the first instance where a milifluidic system enabled OM modeling in the presence of CT drug perfusion and Fn infection. This bioengineered system is a novel tool for drug discovery as it propelled P-EGF as a promising therapy for OM.