A Note on the Exponential Diophantine Equation 8<sup>x</sup> + 161<sup>y</sup> = z<sup>2</sup>

dc.contributor.authorPanraksa C.
dc.contributor.correspondencePanraksa C.
dc.contributor.otherMahidol University
dc.date.accessioned2025-01-23T18:27:35Z
dc.date.available2025-01-23T18:27:35Z
dc.date.issued2025-01-01
dc.description.abstractIn this note, we revisit the exponential Diophantine equation 8x + 161y = z2, initially studied by Manikandan and Venkatraman. Their work established that the equation has the two non-negative integer solutions: (1, 0, 3) and (1, 1, 13). Our findings reveal an additional solution, (2, 1, 15), and we show that these three solutions constitute the complete list of non-negative integer solutions for this equation. This extends and completes the main result presented in their paper.
dc.identifier.citationInternational Journal of Mathematics and Computer Science Vol.20 No.1 (2025) , 41-43
dc.identifier.doi10.69793/ijmcs/01.2025/panraksa
dc.identifier.eissn18140432
dc.identifier.issn18140424
dc.identifier.scopus2-s2.0-85200648287
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/102789
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.subjectComputer Science
dc.titleA Note on the Exponential Diophantine Equation 8<sup>x</sup> + 161<sup>y</sup> = z<sup>2</sup>
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200648287&origin=inward
oaire.citation.endPage43
oaire.citation.issue1
oaire.citation.startPage41
oaire.citation.titleInternational Journal of Mathematics and Computer Science
oaire.citation.volume20
oairecerif.author.affiliationMahidol University

Files

Collections