A Note on the Exponential Diophantine Equation 8<sup>x</sup> + 161<sup>y</sup> = z<sup>2</sup>
| dc.contributor.author | Panraksa C. | |
| dc.contributor.correspondence | Panraksa C. | |
| dc.contributor.other | Mahidol University | |
| dc.date.accessioned | 2025-01-23T18:27:35Z | |
| dc.date.available | 2025-01-23T18:27:35Z | |
| dc.date.issued | 2025-01-01 | |
| dc.description.abstract | In this note, we revisit the exponential Diophantine equation 8x + 161y = z2, initially studied by Manikandan and Venkatraman. Their work established that the equation has the two non-negative integer solutions: (1, 0, 3) and (1, 1, 13). Our findings reveal an additional solution, (2, 1, 15), and we show that these three solutions constitute the complete list of non-negative integer solutions for this equation. This extends and completes the main result presented in their paper. | |
| dc.identifier.citation | International Journal of Mathematics and Computer Science Vol.20 No.1 (2025) , 41-43 | |
| dc.identifier.doi | 10.69793/ijmcs/01.2025/panraksa | |
| dc.identifier.eissn | 18140432 | |
| dc.identifier.issn | 18140424 | |
| dc.identifier.scopus | 2-s2.0-85200648287 | |
| dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/123456789/102789 | |
| dc.rights.holder | SCOPUS | |
| dc.subject | Mathematics | |
| dc.subject | Computer Science | |
| dc.title | A Note on the Exponential Diophantine Equation 8<sup>x</sup> + 161<sup>y</sup> = z<sup>2</sup> | |
| dc.type | Article | |
| mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200648287&origin=inward | |
| oaire.citation.endPage | 43 | |
| oaire.citation.issue | 1 | |
| oaire.citation.startPage | 41 | |
| oaire.citation.title | International Journal of Mathematics and Computer Science | |
| oaire.citation.volume | 20 | |
| oairecerif.author.affiliation | Mahidol University |
