Characterisation of between-cluster heterogeneity in malaria cluster randomised trials to inform future sample size calculations

dc.contributor.authorBiggs J.
dc.contributor.authorChallenger J.D.
dc.contributor.authorDee D.
dc.contributor.authorElobolobo E.
dc.contributor.authorChaccour C.
dc.contributor.authorSaute F.
dc.contributor.authorStaedke S.G.
dc.contributor.authorVilakati S.
dc.contributor.authorChung J.B.
dc.contributor.authorHsiang M.S.
dc.contributor.authorDabira E.D.
dc.contributor.authorErhart A.
dc.contributor.authorD’Alessandro U.
dc.contributor.authorTripura R.
dc.contributor.authorPeto T.J.
dc.contributor.authorVon Seidlein L.
dc.contributor.authorMukaka M.
dc.contributor.authorMosha J.
dc.contributor.authorProtopopoff N.
dc.contributor.authorAccrombessi M.
dc.contributor.authorHayes R.
dc.contributor.authorChurcher T.S.
dc.contributor.authorCook J.
dc.contributor.correspondenceBiggs J.
dc.contributor.otherMahidol University
dc.date.accessioned2025-07-26T18:07:49Z
dc.date.available2025-07-26T18:07:49Z
dc.date.issued2025-12-01
dc.description.abstractCluster randomised trials (CRTs) are important tools for evaluating the community-wide effect of malaria interventions. During the design stage, CRT sample sizes need to be inflated to account for the cluster heterogeneity in measured outcomes. The coefficient of variation (k), a measure of such heterogeneity, is typically used in malaria CRTs yet is often predicted without prior data. Underestimation of k decreases study power, thus increases the probability of generating null results. In this meta-analysis of cluster-summary data from 24 malaria CRTs, we calculate true prevalence and incidence k values using methods-of-moments and regression modelling approaches. Using random effects regression modelling, we investigate the impact of empirical k values on original trial power and explore factors associated with elevated k. Results show empirical estimates of k often exceed those used in sample size calculations, which reduces study power and effect size precision. Elevated k values are associated with incidence outcomes (compared to prevalence), lower endemicity settings, and uneven intervention coverage across clusters. Study findings can enhance the robustness of future malaria CRT sample size calculations by providing informed k estimates based on expected prevalence or incidence, in the absence of cluster-level data.
dc.identifier.citationNature Communications Vol.16 No.1 (2025)
dc.identifier.doi10.1038/s41467-025-61502-w
dc.identifier.eissn20411723
dc.identifier.scopus2-s2.0-105011061810
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/111396
dc.rights.holderSCOPUS
dc.subjectChemistry
dc.subjectBiochemistry, Genetics and Molecular Biology
dc.subjectPhysics and Astronomy
dc.titleCharacterisation of between-cluster heterogeneity in malaria cluster randomised trials to inform future sample size calculations
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105011061810&origin=inward
oaire.citation.issue1
oaire.citation.titleNature Communications
oaire.citation.volume16
oairecerif.author.affiliationStanford University
oairecerif.author.affiliationUniversity of California, San Francisco
oairecerif.author.affiliationUCSF School of Medicine
oairecerif.author.affiliationUniversität Basel
oairecerif.author.affiliationLondon School of Hygiene & Tropical Medicine
oairecerif.author.affiliationUniversidad de Navarra
oairecerif.author.affiliationImperial College Faculty of Medicine
oairecerif.author.affiliationNuffield Department of Medicine
oairecerif.author.affiliationLiverpool School of Tropical Medicine
oairecerif.author.affiliationSwiss Tropical and Public Health Institute Swiss TPH
oairecerif.author.affiliationKenya Medical Research Institute
oairecerif.author.affiliationInstituto de Salud Global de Barcelona
oairecerif.author.affiliationMahidol Oxford Tropical Medicine Research Unit
oairecerif.author.affiliationCentro de Investigación Biomédica en Red de Enfermedades Infecciosas
oairecerif.author.affiliationChan Zuckerberg Biohub
oairecerif.author.affiliationNational Institute for Medical Research Tanga
oairecerif.author.affiliationCentro de Investigação em Saúde de Manhiça CISM
oairecerif.author.affiliationPopulation Services International
oairecerif.author.affiliationClinical Research department
oairecerif.author.affiliationMinistry of Health

Files

Collections