Comparative Evaluation of Fixed Windowing Strategies on CT Brain Images Using Multiple Deep Learning Models

dc.contributor.authorViriyavisuthisakul S.
dc.contributor.authorKaothanthong N.
dc.contributor.authorSanguansat P.
dc.contributor.authorYamasaki T.
dc.contributor.authorSongsaeng D.
dc.contributor.correspondenceViriyavisuthisakul S.
dc.contributor.otherMahidol University
dc.date.accessioned2024-04-21T18:18:00Z
dc.date.available2024-04-21T18:18:00Z
dc.date.issued2023-01-01
dc.description.abstractWindow setting in CT brain images is the crucial pre-processing step to examine the abnormalities for diagnosing disease. Recently, many methods have been proposed to determine the suitable window automatically instead of fixing the window. However, fixed windowing methods may still be used in clinical practice due to their simplicity and ease of use. Here, we propose to evaluate the 45 different fixed windowing in noncontrast cranial computer tomography (NCCT) images without computer tomography perfusion (CTp). The 15 latest deep learning models are performed on all interested windows to classify between the hyperacute or acute phases of ischemic stroke and normal brain. The experiments can provide the reference fixed windowing value to optimize the deep learning model and help clinicians to choose the appropriate fixed windowing values.
dc.identifier.citationProceedings - 17th International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2023 (2023) , 196-200
dc.identifier.doi10.1109/SITIS61268.2023.00037
dc.identifier.scopus2-s2.0-85190129608
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/98060
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.titleComparative Evaluation of Fixed Windowing Strategies on CT Brain Images Using Multiple Deep Learning Models
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85190129608&origin=inward
oaire.citation.endPage200
oaire.citation.startPage196
oaire.citation.titleProceedings - 17th International Conference on Signal-Image Technology and Internet-Based Systems, SITIS 2023
oairecerif.author.affiliationThe University of Tokyo
oairecerif.author.affiliationThammasat University
oairecerif.author.affiliationFaculty of Medicine Siriraj Hospital, Mahidol University
oairecerif.author.affiliationFaculty of Engineering and Technology

Files

Collections