Deep Learning for Automatic Classification of Carotenoid Associated Color Pigmentation

dc.contributor.authorRuaydee K.
dc.contributor.authorKusakunniran W.
dc.contributor.authorSrichamnong W.
dc.contributor.correspondenceRuaydee K.
dc.contributor.otherMahidol University
dc.date.accessioned2025-04-02T18:10:03Z
dc.date.available2025-04-02T18:10:03Z
dc.date.issued2024-01-01
dc.description.abstractThis study explores the application of deep learning models, specifically ResNet-34, ResN et-50, and EfficientNet-B0, for the automatic classification of carotenoid-associated color pigmentation in tomatoes. The dataset comprises 250 images categorized into five pigmentation levels, reflecting the varying carotenoid content. Carotenoids, such as lycopene and beta-carotene, are key pigments influencing the color of tomatoes, with deeper reds and oranges indicating higher concentrations. The models were evaluated for direct classification and regression followed by classification. Results show that EfficientNet-B0 achieved the highest accuracy in direct classification (94.00%), while ResNet-34 excelled in regression tasks (91.33%). Future research will continue exploring regression tasks to predict actual carotenoid content in tomatoes, enhancing prediction accuracy and robustness.
dc.identifier.citationIEEE Region 10 Annual International Conference, Proceedings/TENCON (2024) , 822-825
dc.identifier.doi10.1109/TENCON61640.2024.10902750
dc.identifier.eissn21593450
dc.identifier.issn21593442
dc.identifier.scopus2-s2.0-105000396615
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/108600
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.subjectEngineering
dc.titleDeep Learning for Automatic Classification of Carotenoid Associated Color Pigmentation
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105000396615&origin=inward
oaire.citation.endPage825
oaire.citation.startPage822
oaire.citation.titleIEEE Region 10 Annual International Conference, Proceedings/TENCON
oairecerif.author.affiliationMahidol University

Files

Collections