Reconstruction of Cherenkov image by multiple telescopes of LHAASO-WFCTA
Issued Date
2022-12-01
Resource Type
ISSN
25099930
eISSN
25099949
Scopus ID
2-s2.0-85137524220
Journal Title
Radiation Detection Technology and Methods
Volume
6
Issue
4
Start Page
544
End Page
557
Rights Holder(s)
SCOPUS
Bibliographic Citation
Radiation Detection Technology and Methods Vol.6 No.4 (2022) , 544-557
Suggested Citation
Aharonian F., An Q., Axikegu, Bai L.X., Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Cai J.T., Cao Z., Cao Z., Chang J., Chang J.F., Chen E.S., Chen L., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S.H., Chen S.Z., Chen T.L., Chen Y., Cheng H.L., Cheng N., Cheng Y.D., Cui S.W., Cui X.H., Cui Y.D., D’Ettorre Piazzoli B., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, della Volpe D., Duan K.K., Fan J.H., Fan Y.Z., Fan Z.X., Fang J., Fang K., Feng C.F., Feng L., Feng S.H., Feng X.T., Feng Y.L., Gao B., Gao C.D., Gao L.Q., Gao Q., Gao W., Gao W.K., Ge M.M., Geng L.S., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo J.G., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., He H.H., He H.N., He S.L., He X.B., He Y., Heller M., Hor Y.K., Hou C., Hou X., Hu H.B., Hu Q., Hu S., Hu S.C., Hu X.J., Huang D.H., Huang W.H., Huang X.T., Huang X.Y., Huang Y., Huang Z.C., Ji X.L., Jia H.Y., Jia K., Jiang K., Jiang Z.J., Jin M., Kang M.M., Ke T., Kuleshov D., Levochkin K., Li B.B., Li C., Li C., Li F., Li H.B. Reconstruction of Cherenkov image by multiple telescopes of LHAASO-WFCTA. Radiation Detection Technology and Methods Vol.6 No.4 (2022) , 544-557. 557. doi:10.1007/s41605-022-00342-4 Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/87530
Title
Reconstruction of Cherenkov image by multiple telescopes of LHAASO-WFCTA
Author(s)
Aharonian F.
An Q.
Axikegu
Bai L.X.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai J.T.
Cao Z.
Cao Z.
Chang J.
Chang J.F.
Chen E.S.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng H.L.
Cheng N.
Cheng Y.D.
Cui S.W.
Cui X.H.
Cui Y.D.
D’Ettorre Piazzoli B.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
della Volpe D.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fan Z.X.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.L.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.G.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He S.L.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.
Hu S.C.
Hu X.J.
Huang D.H.
Huang W.H.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Z.C.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang Z.J.
Jin M.
Kang M.M.
Ke T.
Kuleshov D.
Levochkin K.
Li B.B.
Li C.
Li C.
Li F.
Li H.B.
An Q.
Axikegu
Bai L.X.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Cai J.T.
Cao Z.
Cao Z.
Chang J.
Chang J.F.
Chen E.S.
Chen L.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng H.L.
Cheng N.
Cheng Y.D.
Cui S.W.
Cui X.H.
Cui Y.D.
D’Ettorre Piazzoli B.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
della Volpe D.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fan Z.X.
Fang J.
Fang K.
Feng C.F.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.L.
Gao B.
Gao C.D.
Gao L.Q.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Geng L.S.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.G.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
He H.H.
He H.N.
He S.L.
He X.B.
He Y.
Heller M.
Hor Y.K.
Hou C.
Hou X.
Hu H.B.
Hu Q.
Hu S.
Hu S.C.
Hu X.J.
Huang D.H.
Huang W.H.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Z.C.
Ji X.L.
Jia H.Y.
Jia K.
Jiang K.
Jiang Z.J.
Jin M.
Kang M.M.
Ke T.
Kuleshov D.
Levochkin K.
Li B.B.
Li C.
Li C.
Li F.
Li H.B.
Author's Affiliation
State Key Laboratory of Particle Detection & Electronics
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics Chinese Academy of Science
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Università degli Studi di Napoli Federico II
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Yunnan Observatories
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics Chinese Academy of Science
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Institiúid Ard-Lénn Bhaile Átha Cliath
Università degli Studi di Napoli Federico II
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Other Contributor(s)
Abstract
Introduction: One of main scientific goals of the Large High Altitude Air Shower Observatory (LHAASO) is to accurately measure the energy spectra of different cosmic ray compositions around the ‘knee’ region. The Wide Field-of-View (FoV) Cherenkov Telescope Array (WFCTA), which is one of the main detectors of LHAASO and has 18 telescopes, is built to achieve this goal. Multiple telescopes are put together and point to connected directions for a larger FoV. Method: Telescopes are deployed spatially as close as possible, but due to their own size, the distance between two adjacent telescopes is about 10 m. Therefore, the Cherenkov lateral distribution and the parallax between the two telescopes should be considered in the event building process for images crossing over the boundaries of FoVs of the telescopes. An event building method for Cherenkov images measured by multiple telescopes of WFCTA is developed. The performance of the shower measurements using the combined images is evaluated by comparing with showers that are fully contained by a virtual telescope in simulation. Results and conclusion: It is proved that the developed event building process can help to increase the FoV of WFCTA by 30% while maintaining the same reconstruction quality, compared to the separate telescope reconstruction method.