Some Divisibility Properties Concerning Lucas and Elliptic Divisibility Sequences

dc.contributor.authorPanraksa C.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:28:22Z
dc.date.available2023-06-18T17:28:22Z
dc.date.issued2022-01-01
dc.description.abstractWe consider sequences of integers formed by a quotient of the Lucas sequences or elliptic divisibility sequences. We then investigate some divisibility properties of these quotient sequences. Additionally, we prove that elliptic divisibility sequences possess a divisibility property that is analogous to a generalization of Matijasevich’s lemma involving the Fibonacci numbers, which contributed to the solution to Hilbert’s tenth problem.
dc.identifier.citationJournal of Integer Sequences Vol.25 No.9 (2022)
dc.identifier.eissn15307638
dc.identifier.scopus2-s2.0-85140641776
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/85119
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleSome Divisibility Properties Concerning Lucas and Elliptic Divisibility Sequences
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85140641776&origin=inward
oaire.citation.issue9
oaire.citation.titleJournal of Integer Sequences
oaire.citation.volume25
oairecerif.author.affiliationMahidol University

Files

Collections