Health Data Classification using Applied Cascade Generalization

dc.contributor.authorNilnumpetch C.
dc.contributor.authorAmornsamankul S.
dc.contributor.authorKraipeerapun P.
dc.contributor.otherMahidol University
dc.date.accessioned2023-07-17T18:02:06Z
dc.date.available2023-07-17T18:02:06Z
dc.date.issued2023-01-01
dc.description.abstractThis research study introduces two steps to improve the binary classification technique without using threshold value. The first step is to use complementary neural networks to produce the truth data and falsity data. The truth and falsity data are used for decision making instead of threshold value. The second step is to separately improve these two data using the applied cascade generalization. The improved truth and falsity data will be used to obtain classification results. The proposed technique is applied to health-related datasets from the UCI machine learning repository which are heart failure clinical records dataset, early stage diabetes risk prediction dataset, and blood transfusion service center dataset. The proposed two-steps technique is found to provide the most accurate average results compared to existing techniques.
dc.identifier.citation6th International Conference on Inventive Computation Technologies, ICICT 2023 - Proceedings (2023) , 503-507
dc.identifier.doi10.1109/ICICT57646.2023.10134424
dc.identifier.scopus2-s2.0-85163454484
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/87879
dc.rights.holderSCOPUS
dc.subjectDecision Sciences
dc.titleHealth Data Classification using Applied Cascade Generalization
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85163454484&origin=inward
oaire.citation.endPage507
oaire.citation.startPage503
oaire.citation.title6th International Conference on Inventive Computation Technologies, ICICT 2023 - Proceedings
oairecerif.author.affiliationRamkhamhaeng University
oairecerif.author.affiliationMahidol University

Files

Collections