Developing high-dimensional machine learning models to improve generalization ability and overcome data insufficiency for mixed sugar fermentation simulation

dc.contributor.authorHuang X.Y.
dc.contributor.authorAo T.J.
dc.contributor.authorZhang X.
dc.contributor.authorLi K.
dc.contributor.authorZhao X.Q.
dc.contributor.authorChampreda V.
dc.contributor.authorRunguphan W.
dc.contributor.authorSakdaronnarong C.
dc.contributor.authorLiu C.G.
dc.contributor.authorBai F.W.
dc.contributor.otherMahidol University
dc.date.accessioned2023-07-22T18:01:10Z
dc.date.available2023-07-22T18:01:10Z
dc.date.issued2023-10-01
dc.description.abstractBiorefinery can be promoted by building accurate machine learning models. This work proposed a strategy to enhance model's generalization ability and overcome insufficient data conditions for mixed sugar fermentation simulation. Multiple inputs single output models, using initial glucose, initial xylose, and time together as inputs, have higher generalization ability than single input single output models with time as sole input in predicting glucose, xylose, ethanol, or biomass separately. Multiple inputs multiple outputs models, integrating outputs, enhanced model accuracy and resulted in an average R2 at 0.99. To overcome data insufficiency conditions, consensus yeast (CY) model, through consolidating data from 4 yeasts, obtained R2 at 0.90. By adjusting the pretrained CY model, the model can save more than 50% data and get R2 at 0.95 and 0.93 for yeast and bacterial fermentation simulation. The strategy can expand the application range and save costs of data curation for ANN models.
dc.identifier.citationBioresource Technology Vol.385 (2023)
dc.identifier.doi10.1016/j.biortech.2023.129375
dc.identifier.eissn18732976
dc.identifier.issn09608524
dc.identifier.pmid37352987
dc.identifier.scopus2-s2.0-85164486808
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/88014
dc.rights.holderSCOPUS
dc.subjectChemical Engineering
dc.titleDeveloping high-dimensional machine learning models to improve generalization ability and overcome data insufficiency for mixed sugar fermentation simulation
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85164486808&origin=inward
oaire.citation.titleBioresource Technology
oaire.citation.volume385
oairecerif.author.affiliationState Key Laboratory of Microbial Metabolism
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationThailand National Center for Genetic Engineering and Biotechnology

Files

Collections