Transforming sunlight through ultrasonically engineered ZnO and g-C₃N₄ Z-scheme heterostructure for superior photocatalysis: Experimental and theoretical study

dc.contributor.authorFereidooni M.
dc.contributor.authorMárquez V.
dc.contributor.authorGholami R.
dc.contributor.authorPaz C.V.
dc.contributor.authorVillanueva M.S.
dc.contributor.authorKanjanaboos P.
dc.contributor.authorKamjam N.
dc.contributor.authorKhan R.A.
dc.contributor.authorPraserthdam S.
dc.contributor.authorPraserthdam P.
dc.contributor.correspondenceFereidooni M.
dc.contributor.otherMahidol University
dc.date.accessioned2024-08-12T18:04:32Z
dc.date.available2024-08-12T18:04:32Z
dc.date.issued2024-12-01
dc.description.abstractIn this study, we enhanced ZnO photocatalytic activity by synthesizing nanostructures with high aspect ratio of exposed polar facets. Post-synthesis ultrasonication induced morphological reconfiguration, improving optoelectronic properties, charge carrier separation, photocurrent, and shifted the valence band edge potential to higher positive values, providing a heightened overpotential for hydroxyl radical formation. The resulting overpotential for hydroxyl radical formation significantly boosted phenol degradation under UV light. To extend photoresponse, we employed ultrasonication to create a direct Z-scheme heterostructure with gCN, preventing particle aggregation. The S-ZnO/gCN photocatalyst, exhibiting a highly ordered structure, demonstrated superior photocatalytic activity under solar light for phenol degradation. Experimental results showed that increased dissolved oxygen accelerated hydroquinone and catechol formation, enhancing phenol degradation. Experimental results were supported by theoretical calculations. This innovative approach not only improves ZnO photocatalytic activity but also broadens its application to solar light-driven reactions.
dc.identifier.citationMaterials Research Bulletin Vol.180 (2024)
dc.identifier.doi10.1016/j.materresbull.2024.113034
dc.identifier.issn00255408
dc.identifier.scopus2-s2.0-85200643164
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/100444
dc.rights.holderSCOPUS
dc.subjectMaterials Science
dc.subjectPhysics and Astronomy
dc.subjectEngineering
dc.titleTransforming sunlight through ultrasonically engineered ZnO and g-C₃N₄ Z-scheme heterostructure for superior photocatalysis: Experimental and theoretical study
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200643164&origin=inward
oaire.citation.titleMaterials Research Bulletin
oaire.citation.volume180
oairecerif.author.affiliationChulalongkorn University
oairecerif.author.affiliationBenemérita Universidad Autónoma de Puebla
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationCollege of Sciences

Files

Collections