Advancing Organ-on-Chip Models With a Sacrificial Granular Hydrogel Strategy for Enhanced Permeability and Biomimicry

dc.contributor.authorCaires H.R.
dc.contributor.authorCastillo-Fernández Ó.
dc.contributor.authorSima N.
dc.contributor.authorMagalhães M.V.
dc.contributor.authorBenavent-Claró A.
dc.contributor.authorMasó-Castro N.
dc.contributor.authorRoobsoong W.
dc.contributor.authorFernandez-Becerra C.
dc.contributor.authorHernández-Machado A.
dc.contributor.authordel Portillo H.A.
dc.contributor.authorBarrias C.C.
dc.contributor.correspondenceCaires H.R.
dc.contributor.otherMahidol University
dc.date.accessioned2025-11-20T18:21:59Z
dc.date.available2025-11-20T18:21:59Z
dc.date.issued2025-01-01
dc.description.abstractInfectious diseases such as malaria, leishmaniasis, and human immunodeficiency virus (HIV) involve pathogens with complex life cycles that span multiple organs, including the bone marrow (BM), a niche for latent or cryptic infections. Studying these hidden stages in patients presents significant technical and ethical challenges, underscoring the need for advanced in vitro models such as organ-on-chip (OoC) platforms. While cell-laden hydrogels can replicate tissue-like 3D-microenvironments, their small mesh size may restrict pathogen migration and cell–pathogen interactions, both critical for establishing infection on-chip. To overcome this limitation, this work develops a “reversed” granular hydrogel strategy that creates interconnected microporosity in hydrogels incorporated into organ-on-chip compartments. Sacrificial alginate (ALG) µgels are embedded as porogens in a fibrin–collagen (FIB-COL) precursor inside a custom BM-on-chip and, after crosslinking, are selectively removed by in situ enzymatic/chemical leaching to yield highly porous hydrogels (pFIB-COL). The pFIB-COL supports 3D-cultures of mesenchymal stromal cells, endothelial cells, and erythroblasts. Physical and cellular analyses show reduced flow resistance, enhanced particle and cell permeation, more uniform cell distribution and improved endothelial network formation compared with native FIB-COL. This versatile strategy is readily adaptable to other hydrogel systems, providing a valuable tool for the faithful modeling of infection processes in biomimetic 3D-microenvironments within OoC devices.
dc.identifier.citationSmall Methods (2025)
dc.identifier.doi10.1002/smtd.202500652
dc.identifier.eissn23669608
dc.identifier.scopus2-s2.0-105021239210
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/113138
dc.rights.holderSCOPUS
dc.subjectMaterials Science
dc.subjectChemistry
dc.titleAdvancing Organ-on-Chip Models With a Sacrificial Granular Hydrogel Strategy for Enhanced Permeability and Biomimicry
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=105021239210&origin=inward
oaire.citation.titleSmall Methods
oairecerif.author.affiliationUniversitat de Barcelona
oairecerif.author.affiliationUniversidade do Porto
oairecerif.author.affiliationInstitució Catalana de Recerca i Estudis Avançats
oairecerif.author.affiliationInstituto de Salud Global de Barcelona
oairecerif.author.affiliationFaculty of Tropical Medicine, Mahidol University
oairecerif.author.affiliationi3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Portugal
oairecerif.author.affiliationInstituto de Nanociencia y Nanotecnología Universitat de Barcelona
oairecerif.author.affiliationINEB-Instituto Nacional de Engenharia Biomédica
oairecerif.author.affiliationFundació Institut dInvestigació en Ciències de la Salut Germans Trias i Pujol

Files

Collections