Multitask learning via pseudo-label generation and ensemble prediction for parasitic egg cell detection: IEEE ICIP Challenge 2022

dc.contributor.authorAung Z.H.
dc.contributor.authorSrithaworn K.
dc.contributor.authorAchakulvisut T.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:03:39Z
dc.date.available2023-06-18T17:03:39Z
dc.date.issued2022-01-01
dc.description.abstractParasitic infections are one of the leading causes of deaths and other ailments worldwide. Detecting such infections using traditional diagnostic procedures requires experienced medical technologists together with a significant amount of time and effort. An automated procedure with the ability to accurately detect parasitic diseases can greatly accelerate the process. This work proposes a deep learning-based object detection for parasitic egg detection and classification. We show that multitask learning via pseudo-mask generation improves the single model performance. Moreover, we show that a combination of multitask learning, pseudo-label generation, and ensembling model predictions can accurately detect parasitic egg cells. Continuous training via pseudo-label generation and ensemble predictions improves the accuracy of single-model detection. Our final model achieved a mean precision score (mAP) of 0.956 on a validation set of 1, 650 images. Our best model obtained mIoU and mF1 scores of 0.934 and 0.988 respectively. We discuss its technical implementation in this paper.
dc.identifier.citationProceedings - International Conference on Image Processing, ICIP (2022) , 4273-4277
dc.identifier.doi10.1109/ICIP46576.2022.9897464
dc.identifier.issn15224880
dc.identifier.scopus2-s2.0-85136124623
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/84378
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.titleMultitask learning via pseudo-label generation and ensemble prediction for parasitic egg cell detection: IEEE ICIP Challenge 2022
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85136124623&origin=inward
oaire.citation.endPage4277
oaire.citation.startPage4273
oaire.citation.titleProceedings - International Conference on Image Processing, ICIP
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationLooloo Technology

Files

Collections