Two games on arithmetic functions: SALIQUANT and NONTOTIENT

dc.contributor.authorEllis P.
dc.contributor.authorShi J.
dc.contributor.authorThanatipanonda T.A.
dc.contributor.authorTu A.
dc.contributor.correspondenceEllis P.
dc.contributor.otherMahidol University
dc.date.accessioned2024-03-25T18:06:31Z
dc.date.available2024-03-25T18:06:31Z
dc.date.issued2023-01-01
dc.description.abstractWe investigate the Sprague-Grundy sequences for two normal-play impartial games based on arithmetic functions, first described by Iannucci and Larsson in a book chapter. In each game, the set of positions is N. In saliquant, the options are to subtract a non-divisor. Here we obtain several nice number theoretic lemmas, a fundamental theorem, and two conjectures about the eventual density of Sprague-Grundy values. In nontotient, the only option is to subtract the number of relatively prime residues. Here we are able to calculate certain Sprague-Grundy values and start to understand an appropriate class function.
dc.identifier.citationDiscrete Mathematics Letters Vol.12 (2023) , 209-216
dc.identifier.doi10.47443/dml.2023.154
dc.identifier.eissn26642557
dc.identifier.scopus2-s2.0-85188207004
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/97751
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titleTwo games on arithmetic functions: SALIQUANT and NONTOTIENT
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85188207004&origin=inward
oaire.citation.endPage216
oaire.citation.startPage209
oaire.citation.titleDiscrete Mathematics Letters
oaire.citation.volume12
oairecerif.author.affiliationDepartment of Mathematics
oairecerif.author.affiliationCalifornia Institute of Technology
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationBrunswick School

Files

Collections