Two games on arithmetic functions: SALIQUANT and NONTOTIENT
dc.contributor.author | Ellis P. | |
dc.contributor.author | Shi J. | |
dc.contributor.author | Thanatipanonda T.A. | |
dc.contributor.author | Tu A. | |
dc.contributor.correspondence | Ellis P. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2024-03-25T18:06:31Z | |
dc.date.available | 2024-03-25T18:06:31Z | |
dc.date.issued | 2023-01-01 | |
dc.description.abstract | We investigate the Sprague-Grundy sequences for two normal-play impartial games based on arithmetic functions, first described by Iannucci and Larsson in a book chapter. In each game, the set of positions is N. In saliquant, the options are to subtract a non-divisor. Here we obtain several nice number theoretic lemmas, a fundamental theorem, and two conjectures about the eventual density of Sprague-Grundy values. In nontotient, the only option is to subtract the number of relatively prime residues. Here we are able to calculate certain Sprague-Grundy values and start to understand an appropriate class function. | |
dc.identifier.citation | Discrete Mathematics Letters Vol.12 (2023) , 209-216 | |
dc.identifier.doi | 10.47443/dml.2023.154 | |
dc.identifier.eissn | 26642557 | |
dc.identifier.scopus | 2-s2.0-85188207004 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/97751 | |
dc.rights.holder | SCOPUS | |
dc.subject | Mathematics | |
dc.title | Two games on arithmetic functions: SALIQUANT and NONTOTIENT | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85188207004&origin=inward | |
oaire.citation.endPage | 216 | |
oaire.citation.startPage | 209 | |
oaire.citation.title | Discrete Mathematics Letters | |
oaire.citation.volume | 12 | |
oairecerif.author.affiliation | Department of Mathematics | |
oairecerif.author.affiliation | California Institute of Technology | |
oairecerif.author.affiliation | Mahidol University | |
oairecerif.author.affiliation | Brunswick School |