Brain Hemorrhage Segmentation in CT Scan Images using Deep Learning based Approach
dc.contributor.author | Zhang H. | |
dc.contributor.author | Kusakunniran W. | |
dc.contributor.author | Siriapisith T. | |
dc.contributor.author | Saiviroonporn P. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2023-06-18T17:02:43Z | |
dc.date.available | 2023-06-18T17:02:43Z | |
dc.date.issued | 2022-01-01 | |
dc.description.abstract | In this paper, a variety of neural networks are compared, and the optimal CE-Net model is found and improved. It can segment CT images of cerebral hemorrhage, especially for the small and irregular images. | |
dc.identifier.citation | IEEE Region 10 Annual International Conference, Proceedings/TENCON Vol.2022-November (2022) | |
dc.identifier.doi | 10.1109/TENCON55691.2022.9977491 | |
dc.identifier.eissn | 21593450 | |
dc.identifier.issn | 21593442 | |
dc.identifier.scopus | 2-s2.0-85145657571 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/84322 | |
dc.rights.holder | SCOPUS | |
dc.subject | Computer Science | |
dc.title | Brain Hemorrhage Segmentation in CT Scan Images using Deep Learning based Approach | |
dc.type | Conference Paper | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85145657571&origin=inward | |
oaire.citation.title | IEEE Region 10 Annual International Conference, Proceedings/TENCON | |
oaire.citation.volume | 2022-November | |
oairecerif.author.affiliation | Siriraj Hospital | |
oairecerif.author.affiliation | Mahidol University |