Planar Stick Indices of Some Knotted Graphs

dc.contributor.authorKhandhawit T.
dc.contributor.authorPongtanapaisan P.
dc.contributor.authorWasun A.
dc.contributor.correspondenceKhandhawit T.
dc.contributor.otherMahidol University
dc.date.accessioned2024-08-11T18:13:49Z
dc.date.available2024-08-11T18:13:49Z
dc.date.issued2024-01-01
dc.description.abstractTwo isomorphic graphs can have inequivalent spatial embeddings in 3-space. In this way, an isomorphism class of graphs contains many spatial graph types. A common way to measure the complexity of a spatial graph type is to count the minimum number of straight sticks needed for its construction in 3-space. In this paper, we give estimates of this quantity by enumerating stick diagrams in a plane. In particular, we compute the planar stick indices of knotted graphs with low crossing numbers. We also show that if a bouquet graph or a theta-curve has the property that its proper subgraphs are all trivial, then the planar stick index must be at least seven.
dc.identifier.citationExperimental Mathematics (2024)
dc.identifier.doi10.1080/10586458.2024.2381681
dc.identifier.eissn1944950X
dc.identifier.issn10586458
dc.identifier.scopus2-s2.0-85200504434
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/100428
dc.rights.holderSCOPUS
dc.subjectMathematics
dc.titlePlanar Stick Indices of Some Knotted Graphs
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85200504434&origin=inward
oaire.citation.titleExperimental Mathematics
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationArizona State University

Files

Collections