Precipitation prediction in Thailand by using regression analysis

dc.contributor.advisorWaranyu wongseree
dc.contributor.advisorBunlur Emaruchi
dc.contributor.authorYuranan Jaiyeakyen
dc.date.accessioned2024-02-07T02:14:27Z
dc.date.available2024-02-07T02:14:27Z
dc.date.copyright2013
dc.date.created2013
dc.date.issued2013
dc.descriptionTechnology of Information System Management (Mahidol University 2013)
dc.description.abstractA methodology is presented for statistical downscaling the general circulation model (GCM) of GFDL-R30 and HadGEM output to predict precipitation at meteorology stations in Thailand under expected future climatic conditions. The meteorology stations that were sampled for testing for prediction were Chiang Mai, Udon Thani, Bangkok, Ubon Ratchathama, Nakhon Ratchasima and Phuket, provinces from each region in Thailand. The approach involves a combination of data preprocessing, data classification and regression analysis. In the preprocessing step, this research used data with GFDL-R30 which was compared between logarithm transformations, square root transformations and no transformations. The results showed the correlation yield of both algorithms was less than no transformations but they can help for negative numbers in predicted data. In the classification step, it applied to the model for cutoff on days that had less rainfall and heavy rainfall. It was varied from 0 mm to 1.5 mm. The results showed the classification cannot increase strong correlation performance. The last section presents about post-processing comparison between multiple linear regressions and Gaussian process which is a non-linear regression. The result showed Gaussian process generally yielded better results both for correlation and RMSE for every station that was tested. Therefore, the Gaussian process is a suitable approach for predicting precipitation in the future without any preprocessing.
dc.format.extentx, 39 leaves : ill.
dc.format.mimetypeapplication/pdf
dc.identifier.citationThematic Paper (M.Sc. (Technology of Information System Management))--Mahidol University, 2013
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/95212
dc.language.isoeng
dc.publisherMahidol University. Mahidol University Library and Knowledge Center
dc.rightsผลงานนี้เป็นลิขสิทธิ์ของมหาวิทยาลัยมหิดล ขอสงวนไว้สำหรับเพื่อการศึกษาเท่านั้น ต้องอ้างอิงแหล่งที่มา ห้ามดัดแปลงเนื้อหา และห้ามนำไปใช้เพื่อการค้า
dc.rights.holderMahidol University
dc.subjectRegression analysis
dc.subjectPrecipitation forecasting
dc.subjectNumerical weather forecasting
dc.subjectGaussian processes
dc.titlePrecipitation prediction in Thailand by using regression analysis
dc.title.alternativeการทำนายหยาดน้ำฟ้าในประเทศไทยด้วยวิธีการวิเคราะห์สมการถดถอย
dc.typeMaster Thesis
dcterms.accessRightsopen access
mods.location.urlhttp://mulinet11.li.mahidol.ac.th/e-thesis/2556/cd482/5437855.pdf
thesis.degree.departmentFaculty of Engineering
thesis.degree.disciplineTechnology of Information System Management
thesis.degree.grantorMahidol University
thesis.degree.levelMaster's degree
thesis.degree.nameMaster of Science

Files