Validation of Recombinase Polymerase Amplification with In-House Lateral Flow Assay for mcr-1 Gene Detection of Colistin Resistant Escherichia coli Isolates
Issued Date
2024-10-01
Resource Type
eISSN
20796382
Scopus ID
2-s2.0-85207640231
Journal Title
Antibiotics
Volume
13
Issue
10
Rights Holder(s)
SCOPUS
Bibliographic Citation
Antibiotics Vol.13 No.10 (2024)
Suggested Citation
Ullah N., Suchanta N., Pimpitak U., Santanirand P., Am-In N., Chaichanawongsaroj N. Validation of Recombinase Polymerase Amplification with In-House Lateral Flow Assay for mcr-1 Gene Detection of Colistin Resistant Escherichia coli Isolates. Antibiotics Vol.13 No.10 (2024). doi:10.3390/antibiotics13100984 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/101907
Title
Validation of Recombinase Polymerase Amplification with In-House Lateral Flow Assay for mcr-1 Gene Detection of Colistin Resistant Escherichia coli Isolates
Author's Affiliation
Corresponding Author(s)
Other Contributor(s)
Abstract
Background/Objectives: The emergence of the mobilized colistin resistance 1 (mcr-1) gene, which causes colistin resistance, is a serious concern in animal husbandry, particularly in pigs. Although antibiotic regulations in many countries have prohibited the use of colistin in livestock, the persistence and dissemination of this plasmid-mediated gene require effective and rapid monitoring. Therefore, a rapid, sensitive, and specific method combining recombinase polymerase amplification (RPA) with an in-house lateral flow assay (LFA) for the mcr-1 gene detection was developed. Methods: The colistin agar test and broth microdilution were employed to screen 152 E. coli isolates from pig fecal samples of five antibiotic-used farms. The established RPA-in-house LFA was validated with PCR for mcr-1 gene detection. Results: The RPA-in-house LFA was completed within 35 min (20 min of amplification and 5–15 min on LFA detection) at 37 °C. The sensitivity, specificity, and accuracy were entirely 100% in concordance with PCR results. No cross-reactivity was detected with seven common pathogenic bacteria or other mcr gene variants. Conclusions: Therefore, the in-house RPA-LFA serves as a point-of-care testing tool that is rapid, simple, and portable, facilitating effective surveillance of colistin resistance in both veterinary and clinical settings, thereby enhancing health outcomes.