Automatic Lymph Node Classification with Convolutional Neural Network

dc.contributor.authorUthatham A.
dc.contributor.authorYodrabum N.
dc.contributor.authorSinmaroeng C.
dc.contributor.authorTitijaroonroj T.
dc.contributor.otherMahidol University
dc.date.accessioned2023-06-18T17:02:45Z
dc.date.available2023-06-18T17:02:45Z
dc.date.issued2022-01-01
dc.description.abstractManual lymph node classification is a tedious and time-consuming task. It requires a histopathologist to discriminate a lymph node from other look-alike kinds of tissues. The lymph node is easily misunderstood with other tissues because its shape and color might be similar to the others tissue around it. To automate this task, we present an automatic lymph node classification with convolutional neural network (CNN). In addition, we compared eight existing CNNs to ensure that we discover the best architecture for discriminating lymph node. DenseNet architecture provided the highest performance among AlexNet, VGG, GoogLeNet, ResNet, SqueezeNet, MobileNet, and EfficientNet, the highest accuracy at 0.994 and an F1score of 0.996. DenseNet accomplished the highest performance from two advantages: (i) fewer parameters and (ii) Dense connectivity.
dc.identifier.citationICITEE 2022 - Proceedings of the 14th International Conference on Information Technology and Electrical Engineering (2022) , 223-228
dc.identifier.doi10.1109/ICITEE56407.2022.9954045
dc.identifier.scopus2-s2.0-85143639805
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/84328
dc.rights.holderSCOPUS
dc.subjectComputer Science
dc.titleAutomatic Lymph Node Classification with Convolutional Neural Network
dc.typeConference Paper
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85143639805&origin=inward
oaire.citation.endPage228
oaire.citation.startPage223
oaire.citation.titleICITEE 2022 - Proceedings of the 14th International Conference on Information Technology and Electrical Engineering
oairecerif.author.affiliationKing Mongkut's Institute of Technology Ladkrabang
oairecerif.author.affiliationFaculty of Medicine Siriraj Hospital, Mahidol University

Files

Collections