Publication:
3D Printing of Microgel-Loaded Modular Microcages as Instructive Scaffolds for Tissue Engineering

dc.contributor.authorRamesh Subbiahen_US
dc.contributor.authorChristina Hipfingeren_US
dc.contributor.authorAnthony Tahayerien_US
dc.contributor.authorAvathamsa Athirasalaen_US
dc.contributor.authorSivaporn Horsophonphongen_US
dc.contributor.authorGreeshma Thrivikramanen_US
dc.contributor.authorCristiane Miranda Françaen_US
dc.contributor.authorDiana Araujo Cunhaen_US
dc.contributor.authorAmin Mansoorifaren_US
dc.contributor.authorAlbena Zaharieven_US
dc.contributor.authorJames M. Jonesen_US
dc.contributor.authorPaulo G. Coelhoen_US
dc.contributor.authorLukasz Witeken_US
dc.contributor.authorHua Xieen_US
dc.contributor.authorRobert E. Guldbergen_US
dc.contributor.authorLuiz E. Bertassonien_US
dc.contributor.otherOHSU School of Medicineen_US
dc.contributor.otherNew York Universityen_US
dc.contributor.otherOregon Health & Science Universityen_US
dc.contributor.otherMahidol Universityen_US
dc.contributor.otherUniversity of Oregonen_US
dc.date.accessioned2020-08-25T09:53:39Z
dc.date.available2020-08-25T09:53:39Z
dc.date.issued2020-01-01en_US
dc.description.abstract© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim Biomaterial scaffolds have served as the foundation of tissue engineering and regenerative medicine. However, scaffold systems are often difficult to scale in size or shape in order to fit defect-specific dimensions, and thus provide only limited spatiotemporal control of therapeutic delivery and host tissue responses. Here, a lithography-based 3D printing strategy is used to fabricate a novel miniaturized modular microcage scaffold system, which can be assembled and scaled manually with ease. Scalability is based on an intuitive concept of stacking modules, like conventional toy interlocking plastic blocks, allowing for literally thousands of potential geometric configurations, and without the need for specialized equipment. Moreover, the modular hollow-microcage design allows each unit to be loaded with biologic cargo of different compositions, thus enabling controllable and easy patterning of therapeutics within the material in 3D. In summary, the concept of miniaturized microcage designs with such straight-forward assembly and scalability, as well as controllable loading properties, is a flexible platform that can be extended to a wide range of materials for improved biological performance.en_US
dc.identifier.citationAdvanced Materials. (2020)en_US
dc.identifier.doi10.1002/adma.202001736en_US
dc.identifier.issn15214095en_US
dc.identifier.issn09359648en_US
dc.identifier.other2-s2.0-85088316709en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/57902
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85088316709&origin=inwarden_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.title3D Printing of Microgel-Loaded Modular Microcages as Instructive Scaffolds for Tissue Engineeringen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85088316709&origin=inwarden_US

Files

Collections