Publication: Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
Issued Date
2021-12-01
Resource Type
ISSN
14726947
Other identifier(s)
2-s2.0-85105462293
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
BMC Medical Informatics and Decision Making. Vol.21, No.1 (2021)
Suggested Citation
Behrooz Mamandipoor, Fernando Frutos-Vivar, Oscar Peñuelas, Richard Rezar, Konstantinos Raymondos, Alfonso Muriel, Bin Du, Arnaud W. Thille, Fernando Ríos, Marco González, Lorenzo del-Sorbo, Maria del Carmen Marín, Bruno Valle Pinheiro, Marco Antonio Soares, Nicolas Nin, Salvatore M. Maggiore, Andrew Bersten, Malte Kelm, Raphael Romano Bruno, Pravin Amin, Nahit Cakar, Gee Young Suh, Fekri Abroug, Manuel Jibaja, Dimitros Matamis, Amine Ali Zeggwagh, Yuda Sutherasan, Antonio Anzueto, Bernhard Wernly, Andrés Esteban, Christian Jung, Venet Osmani Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation. BMC Medical Informatics and Decision Making. Vol.21, No.1 (2021). doi:10.1186/s12911-021-01506-w Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/76628
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation
Author(s)
Behrooz Mamandipoor
Fernando Frutos-Vivar
Oscar Peñuelas
Richard Rezar
Konstantinos Raymondos
Alfonso Muriel
Bin Du
Arnaud W. Thille
Fernando Ríos
Marco González
Lorenzo del-Sorbo
Maria del Carmen Marín
Bruno Valle Pinheiro
Marco Antonio Soares
Nicolas Nin
Salvatore M. Maggiore
Andrew Bersten
Malte Kelm
Raphael Romano Bruno
Pravin Amin
Nahit Cakar
Gee Young Suh
Fekri Abroug
Manuel Jibaja
Dimitros Matamis
Amine Ali Zeggwagh
Yuda Sutherasan
Antonio Anzueto
Bernhard Wernly
Andrés Esteban
Christian Jung
Venet Osmani
Fernando Frutos-Vivar
Oscar Peñuelas
Richard Rezar
Konstantinos Raymondos
Alfonso Muriel
Bin Du
Arnaud W. Thille
Fernando Ríos
Marco González
Lorenzo del-Sorbo
Maria del Carmen Marín
Bruno Valle Pinheiro
Marco Antonio Soares
Nicolas Nin
Salvatore M. Maggiore
Andrew Bersten
Malte Kelm
Raphael Romano Bruno
Pravin Amin
Nahit Cakar
Gee Young Suh
Fekri Abroug
Manuel Jibaja
Dimitros Matamis
Amine Ali Zeggwagh
Yuda Sutherasan
Antonio Anzueto
Bernhard Wernly
Andrés Esteban
Christian Jung
Venet Osmani
Other Contributor(s)
South Texas Veterans Health Care System
Centro de Investigación Biomédica en Red de Enfermedades Respiratorias
Hospital Regional 1° de Octubre ISSSTE
Bruno Kessler Foundation
CHU Fattouma-Bourguiba
Universidad Pontificia Bolivariana
Heinrich-Heine-Universität Düsseldorf
Medizinische Hochschule Hannover (MHH)
Hospital Ramon y Cajal
Centre Hospitalier Universitaire de Poitiers
Flinders University
Mohammed V University in Rabat
SKKU School of Medicine
Faculty of Medicine Ramathibodi Hospital, Mahidol University
Paracelsus Medizinische Privatuniversitat
Papageorgiou General Hospital
İstanbul Tıp Fakültesi
Bombay Hospital and Medical Research Centre
Peking Union Medical College Hospital
Hospital Nacional Professor Dr. Alejandro Posadas
University of G. d'Annunzio Chieti and Pescara
Universidade Federal de Juiz de Fora
Hospital de Especialidades Eugenio Espejo
Interdepartmental Division of Critical Care Medicine
Hospital Español
Hospital Universitário São José
Centro de Investigación Biomédica en Red de Enfermedades Respiratorias
Hospital Regional 1° de Octubre ISSSTE
Bruno Kessler Foundation
CHU Fattouma-Bourguiba
Universidad Pontificia Bolivariana
Heinrich-Heine-Universität Düsseldorf
Medizinische Hochschule Hannover (MHH)
Hospital Ramon y Cajal
Centre Hospitalier Universitaire de Poitiers
Flinders University
Mohammed V University in Rabat
SKKU School of Medicine
Faculty of Medicine Ramathibodi Hospital, Mahidol University
Paracelsus Medizinische Privatuniversitat
Papageorgiou General Hospital
İstanbul Tıp Fakültesi
Bombay Hospital and Medical Research Centre
Peking Union Medical College Hospital
Hospital Nacional Professor Dr. Alejandro Posadas
University of G. d'Annunzio Chieti and Pescara
Universidade Federal de Juiz de Fora
Hospital de Especialidades Eugenio Espejo
Interdepartmental Division of Critical Care Medicine
Hospital Español
Hospital Universitário São José
Abstract
Background: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical ventilation parameters. Methods: We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre study, performed to investigate the effect of baseline characteristics and management changes over time on the all-cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation parameters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related to the function of other organs, improve the predictive performance of the model for both the overall cohort as well as the subgroup of patients with respiratory disorders. Results: Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 (± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders. Conclusion: The RNN-based model demonstrated better performance than RF and LR in patients in mechanical ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it impacts decision-making and patient outcomes. Trial registration: NCT02731898 (https://clinicaltrials.gov/ct2/show/NCT02731898), prospectively registered on April 8, 2016.