Publication:
Machine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validation

dc.contributor.authorBehrooz Mamandipooren_US
dc.contributor.authorFernando Frutos-Vivaren_US
dc.contributor.authorOscar Peñuelasen_US
dc.contributor.authorRichard Rezaren_US
dc.contributor.authorKonstantinos Raymondosen_US
dc.contributor.authorAlfonso Murielen_US
dc.contributor.authorBin Duen_US
dc.contributor.authorArnaud W. Thilleen_US
dc.contributor.authorFernando Ríosen_US
dc.contributor.authorMarco Gonzálezen_US
dc.contributor.authorLorenzo del-Sorboen_US
dc.contributor.authorMaria del Carmen Marínen_US
dc.contributor.authorBruno Valle Pinheiroen_US
dc.contributor.authorMarco Antonio Soaresen_US
dc.contributor.authorNicolas Ninen_US
dc.contributor.authorSalvatore M. Maggioreen_US
dc.contributor.authorAndrew Berstenen_US
dc.contributor.authorMalte Kelmen_US
dc.contributor.authorRaphael Romano Brunoen_US
dc.contributor.authorPravin Aminen_US
dc.contributor.authorNahit Cakaren_US
dc.contributor.authorGee Young Suhen_US
dc.contributor.authorFekri Abrougen_US
dc.contributor.authorManuel Jibajaen_US
dc.contributor.authorDimitros Matamisen_US
dc.contributor.authorAmine Ali Zeggwaghen_US
dc.contributor.authorYuda Sutherasanen_US
dc.contributor.authorAntonio Anzuetoen_US
dc.contributor.authorBernhard Wernlyen_US
dc.contributor.authorAndrés Estebanen_US
dc.contributor.authorChristian Jungen_US
dc.contributor.authorVenet Osmanien_US
dc.contributor.otherSouth Texas Veterans Health Care Systemen_US
dc.contributor.otherCentro de Investigación Biomédica en Red de Enfermedades Respiratoriasen_US
dc.contributor.otherHospital Regional 1° de Octubre ISSSTEen_US
dc.contributor.otherBruno Kessler Foundationen_US
dc.contributor.otherCHU Fattouma-Bourguibaen_US
dc.contributor.otherUniversidad Pontificia Bolivarianaen_US
dc.contributor.otherHeinrich-Heine-Universität Düsseldorfen_US
dc.contributor.otherMedizinische Hochschule Hannover (MHH)en_US
dc.contributor.otherHospital Ramon y Cajalen_US
dc.contributor.otherCentre Hospitalier Universitaire de Poitiersen_US
dc.contributor.otherFlinders Universityen_US
dc.contributor.otherMohammed V University in Rabaten_US
dc.contributor.otherSKKU School of Medicineen_US
dc.contributor.otherFaculty of Medicine Ramathibodi Hospital, Mahidol Universityen_US
dc.contributor.otherParacelsus Medizinische Privatuniversitaten_US
dc.contributor.otherPapageorgiou General Hospitalen_US
dc.contributor.otherİstanbul Tıp Fakültesien_US
dc.contributor.otherBombay Hospital and Medical Research Centreen_US
dc.contributor.otherPeking Union Medical College Hospitalen_US
dc.contributor.otherHospital Nacional Professor Dr. Alejandro Posadasen_US
dc.contributor.otherUniversity of G. d'Annunzio Chieti and Pescaraen_US
dc.contributor.otherUniversidade Federal de Juiz de Foraen_US
dc.contributor.otherHospital de Especialidades Eugenio Espejoen_US
dc.contributor.otherInterdepartmental Division of Critical Care Medicineen_US
dc.contributor.otherHospital Españolen_US
dc.contributor.otherHospital Universitário São Joséen_US
dc.date.accessioned2022-08-04T08:25:49Z
dc.date.available2022-08-04T08:25:49Z
dc.date.issued2021-12-01en_US
dc.description.abstractBackground: Mechanical Ventilation (MV) is a complex and central treatment process in the care of critically ill patients. It influences acid–base balance and can also cause prognostically relevant biotrauma by generating forces and liberating reactive oxygen species, negatively affecting outcomes. In this work we evaluate the use of a Recurrent Neural Network (RNN) modelling to predict outcomes of mechanically ventilated patients, using standard mechanical ventilation parameters. Methods: We performed our analysis on VENTILA dataset, an observational, prospective, international, multi-centre study, performed to investigate the effect of baseline characteristics and management changes over time on the all-cause mortality rate in mechanically ventilated patients in ICU. Our cohort includes 12,596 adult patients older than 18, associated with 12,755 distinct admissions in ICUs across 37 countries and receiving invasive and non-invasive mechanical ventilation. We carry out four different analysis. Initially we select typical mechanical ventilation parameters and evaluate the machine learning model on both, the overall cohort and a subgroup of patients admitted with respiratory disorders. Furthermore, we carry out sensitivity analysis to evaluate whether inclusion of variables related to the function of other organs, improve the predictive performance of the model for both the overall cohort as well as the subgroup of patients with respiratory disorders. Results: Predictive performance of RNN-based model was higher with Area Under the Receiver Operating Characteristic (ROC) Curve (AUC) of 0.72 (± 0.01) and Average Precision (AP) of 0.57 (± 0.01) in comparison to RF and LR for the overall patient dataset. Higher predictive performance was recorded in the subgroup of patients admitted with respiratory disorders with AUC of 0.75 (± 0.02) and AP of 0.65 (± 0.03). Inclusion of function of other organs further improved the performance to AUC of 0.79 (± 0.01) and AP 0.68 (± 0.02) for the overall patient dataset and AUC of 0.79 (± 0.01) and AP 0.72 (± 0.02) for the subgroup with respiratory disorders. Conclusion: The RNN-based model demonstrated better performance than RF and LR in patients in mechanical ventilation and its subgroup admitted with respiratory disorders. Clinical studies are needed to evaluate whether it impacts decision-making and patient outcomes. Trial registration: NCT02731898 (https://clinicaltrials.gov/ct2/show/NCT02731898), prospectively registered on April 8, 2016.en_US
dc.identifier.citationBMC Medical Informatics and Decision Making. Vol.21, No.1 (2021)en_US
dc.identifier.doi10.1186/s12911-021-01506-wen_US
dc.identifier.issn14726947en_US
dc.identifier.other2-s2.0-85105462293en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/76628
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105462293&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.subjectMedicineen_US
dc.titleMachine learning predicts mortality based on analysis of ventilation parameters of critically ill patients: multi-centre validationen_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85105462293&origin=inwarden_US

Files

Collections