Publication: Calibration of the air shower energy scale of the water and air Cherenkov techniques in the LHAASO experiment
Issued Date
2021-09-15
Resource Type
ISSN
24700029
24700010
24700010
Other identifier(s)
2-s2.0-85115385951
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Physical Review D. Vol.104, No.6 (2021)
Suggested Citation
F. Aharonian, Q. An, Axikegu, L. X. Bai, Y. X. Bai, Y. W. Bao, D. Bastieri, X. J. Bi, Y. J. Bi, H. Cai, J. T. Cai, Zhen Cao, Zhe Cao, J. Chang, J. F. Chang, B. M. Chen, E. S. Chen, J. Chen, Liang Chen, Liang Chen, Long Chen, M. J. Chen, M. L. Chen, Q. H. Chen, S. H. Chen, S. Z. Chen, T. L. Chen, X. L. Chen, Y. Chen, N. Cheng, Y. D. Cheng, S. W. Cui, X. H. Cui, Y. D. Cui, B. Z. Dai, H. L. Dai, Z. G. Dai, Danzengluobu, D. Della Volpe, B. D.Ettorre Piazzoli, X. J. Dong, K. K. Duan, J. H. Fan, Y. Z. Fan, Z. X. Fan, J. Fang, K. Fang, C. F. Feng, L. Feng, S. H. Feng, Y. L. Feng, B. Gao, C. D. Gao, L. Q. Gao, Q. Gao, W. Gao, M. M. Ge, L. S. Geng, G. H. Gong, Q. B. Gou, M. H. Gu, F. L. Guo, J. G. Guo, X. L. Guo, Y. Q. Guo, Y. Y. Guo, Y. A. Han, H. H. He, H. N. He, J. C. He, S. L. He, X. B. He, Y. He, M. Heller, Y. K. Hor, C. Hou, H. B. Hu, S. Hu, S. C. Hu, X. J. Hu, D. H. Huang, Q. L. Huang, W. H. Huang, X. T. Huang, X. Y. Huang, Z. C. Huang, F. Ji, X. L. Ji, H. Y. Jia, K. Jiang, Z. J. Jiang, C. Jin, T. Ke, D. Kuleshov, K. Levochkin, B. B. Li, Cong Li, Cheng Li, F. Li, H. B. Li Calibration of the air shower energy scale of the water and air Cherenkov techniques in the LHAASO experiment. Physical Review D. Vol.104, No.6 (2021). doi:10.1103/PhysRevD.104.062007 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/78992
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Calibration of the air shower energy scale of the water and air Cherenkov techniques in the LHAASO experiment
Author(s)
F. Aharonian
Q. An
Axikegu
L. X. Bai
Y. X. Bai
Y. W. Bao
D. Bastieri
X. J. Bi
Y. J. Bi
H. Cai
J. T. Cai
Zhen Cao
Zhe Cao
J. Chang
J. F. Chang
B. M. Chen
E. S. Chen
J. Chen
Liang Chen
Liang Chen
Long Chen
M. J. Chen
M. L. Chen
Q. H. Chen
S. H. Chen
S. Z. Chen
T. L. Chen
X. L. Chen
Y. Chen
N. Cheng
Y. D. Cheng
S. W. Cui
X. H. Cui
Y. D. Cui
B. Z. Dai
H. L. Dai
Z. G. Dai
Danzengluobu
D. Della Volpe
B. D.Ettorre Piazzoli
X. J. Dong
K. K. Duan
J. H. Fan
Y. Z. Fan
Z. X. Fan
J. Fang
K. Fang
C. F. Feng
L. Feng
S. H. Feng
Y. L. Feng
B. Gao
C. D. Gao
L. Q. Gao
Q. Gao
W. Gao
M. M. Ge
L. S. Geng
G. H. Gong
Q. B. Gou
M. H. Gu
F. L. Guo
J. G. Guo
X. L. Guo
Y. Q. Guo
Y. Y. Guo
Y. A. Han
H. H. He
H. N. He
J. C. He
S. L. He
X. B. He
Y. He
M. Heller
Y. K. Hor
C. Hou
H. B. Hu
S. Hu
S. C. Hu
X. J. Hu
D. H. Huang
Q. L. Huang
W. H. Huang
X. T. Huang
X. Y. Huang
Z. C. Huang
F. Ji
X. L. Ji
H. Y. Jia
K. Jiang
Z. J. Jiang
C. Jin
T. Ke
D. Kuleshov
K. Levochkin
B. B. Li
Cong Li
Cheng Li
F. Li
H. B. Li
Q. An
Axikegu
L. X. Bai
Y. X. Bai
Y. W. Bao
D. Bastieri
X. J. Bi
Y. J. Bi
H. Cai
J. T. Cai
Zhen Cao
Zhe Cao
J. Chang
J. F. Chang
B. M. Chen
E. S. Chen
J. Chen
Liang Chen
Liang Chen
Long Chen
M. J. Chen
M. L. Chen
Q. H. Chen
S. H. Chen
S. Z. Chen
T. L. Chen
X. L. Chen
Y. Chen
N. Cheng
Y. D. Cheng
S. W. Cui
X. H. Cui
Y. D. Cui
B. Z. Dai
H. L. Dai
Z. G. Dai
Danzengluobu
D. Della Volpe
B. D.Ettorre Piazzoli
X. J. Dong
K. K. Duan
J. H. Fan
Y. Z. Fan
Z. X. Fan
J. Fang
K. Fang
C. F. Feng
L. Feng
S. H. Feng
Y. L. Feng
B. Gao
C. D. Gao
L. Q. Gao
Q. Gao
W. Gao
M. M. Ge
L. S. Geng
G. H. Gong
Q. B. Gou
M. H. Gu
F. L. Guo
J. G. Guo
X. L. Guo
Y. Q. Guo
Y. Y. Guo
Y. A. Han
H. H. He
H. N. He
J. C. He
S. L. He
X. B. He
Y. He
M. Heller
Y. K. Hor
C. Hou
H. B. Hu
S. Hu
S. C. Hu
X. J. Hu
D. H. Huang
Q. L. Huang
W. H. Huang
X. T. Huang
X. Y. Huang
Z. C. Huang
F. Ji
X. L. Ji
H. Y. Jia
K. Jiang
Z. J. Jiang
C. Jin
T. Ke
D. Kuleshov
K. Levochkin
B. B. Li
Cong Li
Cheng Li
F. Li
H. B. Li
Other Contributor(s)
State Key Laboratory of Particle Detection & Electronics
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Wuhan University
Yunnan University
Institute of High Energy Physics Chinese Academy of Science
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Dublin Institute for Advanced Studies
Università degli Studi di Napoli Federico II
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Wuhan University
Yunnan University
Institute of High Energy Physics Chinese Academy of Science
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
Dublin Institute for Advanced Studies
Università degli Studi di Napoli Federico II
Sichuan University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
Purple Mountain Observatory Chinese Academy of Sciences
Université de Genève
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Abstract
The Wide Field-of-View Cherenkov Telescope Array (WFCTA) and the Water Cherenkov Detector Array (WCDA) of LHAASO are designed to work in combination for measuring the energy spectra of the cosmic ray species over a very wide energy range from a few TeV to 10 PeV. The energy calibration can be achieved with a proven technique of measuring the westward shift of the Moon shadow cast by galactic cosmic rays due to the geomagnetic field. This deflection angle Δ is inversely proportional to the cosmic ray rigidity. The precise measurement of the shifts by WCDA allows us to calibrate its energy scale for energies as high as 35 TeV. Through a set of commonly triggered events, the energy scales can be propagated to WFCTA. The energies of the events can be derived both by WCDA-1 and WFCTA with the median energies 23.4±0.1±1.3 TeV and (21.9±0.1 TeV), respectively, which are consistent within uncertainties. In addition, the propagation of the energy scale is also validated by the Moon shadow based on the same data selection criteria of the commonly triggered events. This paper reports, for the first time, an observational measurement of the absolute energy scale of the primary cosmic rays generating showers observed by air Cherenkov telescopes.