Publication:
Calibration of the air shower energy scale of the water and air Cherenkov techniques in the LHAASO experiment

dc.contributor.authorF. Aharonianen_US
dc.contributor.authorQ. Anen_US
dc.contributor.authorAxikeguen_US
dc.contributor.authorL. X. Baien_US
dc.contributor.authorY. X. Baien_US
dc.contributor.authorY. W. Baoen_US
dc.contributor.authorD. Bastierien_US
dc.contributor.authorX. J. Bien_US
dc.contributor.authorY. J. Bien_US
dc.contributor.authorH. Caien_US
dc.contributor.authorJ. T. Caien_US
dc.contributor.authorZhen Caoen_US
dc.contributor.authorZhe Caoen_US
dc.contributor.authorJ. Changen_US
dc.contributor.authorJ. F. Changen_US
dc.contributor.authorB. M. Chenen_US
dc.contributor.authorE. S. Chenen_US
dc.contributor.authorJ. Chenen_US
dc.contributor.authorLiang Chenen_US
dc.contributor.authorLiang Chenen_US
dc.contributor.authorLong Chenen_US
dc.contributor.authorM. J. Chenen_US
dc.contributor.authorM. L. Chenen_US
dc.contributor.authorQ. H. Chenen_US
dc.contributor.authorS. H. Chenen_US
dc.contributor.authorS. Z. Chenen_US
dc.contributor.authorT. L. Chenen_US
dc.contributor.authorX. L. Chenen_US
dc.contributor.authorY. Chenen_US
dc.contributor.authorN. Chengen_US
dc.contributor.authorY. D. Chengen_US
dc.contributor.authorS. W. Cuien_US
dc.contributor.authorX. H. Cuien_US
dc.contributor.authorY. D. Cuien_US
dc.contributor.authorB. Z. Daien_US
dc.contributor.authorH. L. Daien_US
dc.contributor.authorZ. G. Daien_US
dc.contributor.authorDanzengluobuen_US
dc.contributor.authorD. Della Volpeen_US
dc.contributor.authorB. D.Ettorre Piazzolien_US
dc.contributor.authorX. J. Dongen_US
dc.contributor.authorK. K. Duanen_US
dc.contributor.authorJ. H. Fanen_US
dc.contributor.authorY. Z. Fanen_US
dc.contributor.authorZ. X. Fanen_US
dc.contributor.authorJ. Fangen_US
dc.contributor.authorK. Fangen_US
dc.contributor.authorC. F. Fengen_US
dc.contributor.authorL. Fengen_US
dc.contributor.authorS. H. Fengen_US
dc.contributor.authorY. L. Fengen_US
dc.contributor.authorB. Gaoen_US
dc.contributor.authorC. D. Gaoen_US
dc.contributor.authorL. Q. Gaoen_US
dc.contributor.authorQ. Gaoen_US
dc.contributor.authorW. Gaoen_US
dc.contributor.authorM. M. Geen_US
dc.contributor.authorL. S. Gengen_US
dc.contributor.authorG. H. Gongen_US
dc.contributor.authorQ. B. Gouen_US
dc.contributor.authorM. H. Guen_US
dc.contributor.authorF. L. Guoen_US
dc.contributor.authorJ. G. Guoen_US
dc.contributor.authorX. L. Guoen_US
dc.contributor.authorY. Q. Guoen_US
dc.contributor.authorY. Y. Guoen_US
dc.contributor.authorY. A. Hanen_US
dc.contributor.authorH. H. Heen_US
dc.contributor.authorH. N. Heen_US
dc.contributor.authorJ. C. Heen_US
dc.contributor.authorS. L. Heen_US
dc.contributor.authorX. B. Heen_US
dc.contributor.authorY. Heen_US
dc.contributor.authorM. Helleren_US
dc.contributor.authorY. K. Horen_US
dc.contributor.authorC. Houen_US
dc.contributor.authorH. B. Huen_US
dc.contributor.authorS. Huen_US
dc.contributor.authorS. C. Huen_US
dc.contributor.authorX. J. Huen_US
dc.contributor.authorD. H. Huangen_US
dc.contributor.authorQ. L. Huangen_US
dc.contributor.authorW. H. Huangen_US
dc.contributor.authorX. T. Huangen_US
dc.contributor.authorX. Y. Huangen_US
dc.contributor.authorZ. C. Huangen_US
dc.contributor.authorF. Jien_US
dc.contributor.authorX. L. Jien_US
dc.contributor.authorH. Y. Jiaen_US
dc.contributor.authorK. Jiangen_US
dc.contributor.authorZ. J. Jiangen_US
dc.contributor.authorC. Jinen_US
dc.contributor.authorT. Keen_US
dc.contributor.authorD. Kuleshoven_US
dc.contributor.authorK. Levochkinen_US
dc.contributor.authorB. B. Lien_US
dc.contributor.authorCong Lien_US
dc.contributor.authorCheng Lien_US
dc.contributor.authorF. Lien_US
dc.contributor.authorH. B. Lien_US
dc.contributor.otherState Key Laboratory of Particle Detection & Electronicsen_US
dc.contributor.otherNanjing Universityen_US
dc.contributor.otherShanghai Astronomical Observatory Chinese Academy of Sciencesen_US
dc.contributor.otherInstitute for Nuclear Research of the Russian Academy of Sciencesen_US
dc.contributor.otherShandong Universityen_US
dc.contributor.otherWuhan Universityen_US
dc.contributor.otherYunnan Universityen_US
dc.contributor.otherInstitute of High Energy Physics Chinese Academy of Scienceen_US
dc.contributor.otherUniversity of Chinese Academy of Sciencesen_US
dc.contributor.otherGuangzhou Universityen_US
dc.contributor.otherTsinghua Universityen_US
dc.contributor.otherSun Yat-Sen Universityen_US
dc.contributor.otherUniversity of Science and Technology of Chinaen_US
dc.contributor.otherZhengzhou Universityen_US
dc.contributor.otherDublin Institute for Advanced Studiesen_US
dc.contributor.otherUniversità degli Studi di Napoli Federico IIen_US
dc.contributor.otherSichuan Universityen_US
dc.contributor.otherNational Astronomical Observatories Chinese Academy of Sciencesen_US
dc.contributor.otherMax-Planck-Institut für Kernphysiken_US
dc.contributor.otherSouthwest Jiaotong Universityen_US
dc.contributor.otherPurple Mountain Observatory Chinese Academy of Sciencesen_US
dc.contributor.otherUniversité de Genèveen_US
dc.contributor.otherHebei Normal Universityen_US
dc.contributor.otherTibet Universityen_US
dc.contributor.otherTIANFU Cosmic Ray Research Centeren_US
dc.date.accessioned2022-08-04T11:26:12Z
dc.date.available2022-08-04T11:26:12Z
dc.date.issued2021-09-15en_US
dc.description.abstractThe Wide Field-of-View Cherenkov Telescope Array (WFCTA) and the Water Cherenkov Detector Array (WCDA) of LHAASO are designed to work in combination for measuring the energy spectra of the cosmic ray species over a very wide energy range from a few TeV to 10 PeV. The energy calibration can be achieved with a proven technique of measuring the westward shift of the Moon shadow cast by galactic cosmic rays due to the geomagnetic field. This deflection angle Δ is inversely proportional to the cosmic ray rigidity. The precise measurement of the shifts by WCDA allows us to calibrate its energy scale for energies as high as 35 TeV. Through a set of commonly triggered events, the energy scales can be propagated to WFCTA. The energies of the events can be derived both by WCDA-1 and WFCTA with the median energies 23.4±0.1±1.3 TeV and (21.9±0.1 TeV), respectively, which are consistent within uncertainties. In addition, the propagation of the energy scale is also validated by the Moon shadow based on the same data selection criteria of the commonly triggered events. This paper reports, for the first time, an observational measurement of the absolute energy scale of the primary cosmic rays generating showers observed by air Cherenkov telescopes.en_US
dc.identifier.citationPhysical Review D. Vol.104, No.6 (2021)en_US
dc.identifier.doi10.1103/PhysRevD.104.062007en_US
dc.identifier.issn24700029en_US
dc.identifier.issn24700010en_US
dc.identifier.other2-s2.0-85115385951en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/78992
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85115385951&origin=inwarden_US
dc.subjectPhysics and Astronomyen_US
dc.titleCalibration of the air shower energy scale of the water and air Cherenkov techniques in the LHAASO experimenten_US
dc.typeArticleen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85115385951&origin=inwarden_US

Files

Collections