Publication: Bootstrapping with R to Make Generalized Inference for Regression Model
Issued Date
2016-01-01
Resource Type
ISSN
18770509
Other identifier(s)
2-s2.0-84999816206
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Procedia Computer Science. Vol.86, (2016), 228-231
Suggested Citation
Jutatip Sillabutra, Prasong Kitidamrongsuk, Chukiat Viwatwongkasem, Chareena Ujeh, Siam Sae-Tang, Khanokporn Donjdee Bootstrapping with R to Make Generalized Inference for Regression Model. Procedia Computer Science. Vol.86, (2016), 228-231. doi:10.1016/j.procs.2016.05.103 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/43524
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Bootstrapping with R to Make Generalized Inference for Regression Model
Other Contributor(s)
Abstract
© 2016 The Authors. Bootstrap is a resampling procedure drawn from an original sample data with replacement allocation method to build a sampling distribution of a statistic for statistical inference. This paper focuses to validate the generalized linear regression model by using the bootstrap method in order to make generalization of statistical inference to the different settings outside the original. The first application involved the bootstrap regression coefficients of predictors in the classical regression model while the others emphasized the bootstrap responses for binary outcomes in the logistic regression and for count data in the Poisson regression. The results on the bootstrap regression coefficients perform well even if the original data were restricted with small sample sizes and/or non-normal errors. The confidence intervals based upon the normal theory is quite narrower than the percentile interval and the bootstrap t interval. For the results of the bootstrap responses along a single predictor, both percentile confidence intervals of logistic and Poisson regression models perform well with a nice bandwidth of bootstrap responses for generalization.