Publication:
Bootstrapping with R to Make Generalized Inference for Regression Model

dc.contributor.authorJutatip Sillabutraen_US
dc.contributor.authorPrasong Kitidamrongsuken_US
dc.contributor.authorChukiat Viwatwongkasemen_US
dc.contributor.authorChareena Ujehen_US
dc.contributor.authorSiam Sae-Tangen_US
dc.contributor.authorKhanokporn Donjdeeen_US
dc.contributor.otherMahidol Universityen_US
dc.date.accessioned2018-12-11T02:40:57Z
dc.date.accessioned2019-03-14T08:04:35Z
dc.date.available2018-12-11T02:40:57Z
dc.date.available2019-03-14T08:04:35Z
dc.date.issued2016-01-01en_US
dc.description.abstract© 2016 The Authors. Bootstrap is a resampling procedure drawn from an original sample data with replacement allocation method to build a sampling distribution of a statistic for statistical inference. This paper focuses to validate the generalized linear regression model by using the bootstrap method in order to make generalization of statistical inference to the different settings outside the original. The first application involved the bootstrap regression coefficients of predictors in the classical regression model while the others emphasized the bootstrap responses for binary outcomes in the logistic regression and for count data in the Poisson regression. The results on the bootstrap regression coefficients perform well even if the original data were restricted with small sample sizes and/or non-normal errors. The confidence intervals based upon the normal theory is quite narrower than the percentile interval and the bootstrap t interval. For the results of the bootstrap responses along a single predictor, both percentile confidence intervals of logistic and Poisson regression models perform well with a nice bandwidth of bootstrap responses for generalization.en_US
dc.identifier.citationProcedia Computer Science. Vol.86, (2016), 228-231en_US
dc.identifier.doi10.1016/j.procs.2016.05.103en_US
dc.identifier.issn18770509en_US
dc.identifier.other2-s2.0-84999816206en_US
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/43524
dc.rightsMahidol Universityen_US
dc.rights.holderSCOPUSen_US
dc.source.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84999816206&origin=inwarden_US
dc.subjectComputer Scienceen_US
dc.titleBootstrapping with R to Make Generalized Inference for Regression Modelen_US
dc.typeConference Paperen_US
dspace.entity.typePublication
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=84999816206&origin=inwarden_US

Files

Collections