Detection of two TeV gamma-ray outbursts from NGC 1275 by LHAASO
3
Issued Date
2025-06-01
Resource Type
ISSN
00358711
eISSN
13652966
Scopus ID
2-s2.0-105008078460
Journal Title
Monthly Notices of the Royal Astronomical Society
Volume
540
Issue
2
Start Page
1860
End Page
1869
Rights Holder(s)
SCOPUS
Bibliographic Citation
Monthly Notices of the Royal Astronomical Society Vol.540 No.2 (2025) , 1860-1869
Suggested Citation
Cao Z., Aharonian F., Axikegu, Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Bian W., Bukevich A.V., Cao Q., Cao W.Y., Cao Z., Chang J., Chang J.F., Chen A.M., Chen E.S., Chen H.X., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S., Chen S.H., Chen S.Z., Chen T.L., Chen Y., Cheng N., Cheng Y.D., Chu M.C., Cui M.Y., Cui S.W., Cui X.H., Cui Y.D., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, Dong X.Q., Duan K.K., Fan J.H., Fan Y.Z., Fang J., Fang J.H., Fang K., Feng C.F., Feng H., Feng L., Feng S.H., Feng X.T., Feng Y., Feng Y.L., Gabici S., Gao B., Gao C.D., Gao Q., Gao W., Gao W.K., Ge M.M., Ge T.T., Geng L.S., Giacinti G., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo J., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., Hannuksela O.A., Hasan M., He H.H., He H.N., He J.Y., He Y., Hor Y.K., Hou B.W., Hou C., Hu H.B., Hu Q., Hu S.C., Huang C., Huang D.H., Huang T.Q., Huang W.J., Huang X.T., Huang X.Y., Huang Y., Huang Y.Y., Ji X.L., Jia H.Y., Jia K., Jiang H.B., Jiang K., Jiang X.W., Jiang Z.J., Jin M. Detection of two TeV gamma-ray outbursts from NGC 1275 by LHAASO. Monthly Notices of the Royal Astronomical Society Vol.540 No.2 (2025) , 1860-1869. 1869. doi:10.1093/mnras/stae2512 Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/110819
Title
Detection of two TeV gamma-ray outbursts from NGC 1275 by LHAASO
Author(s)
Cao Z.
Aharonian F.
Axikegu
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Bian W.
Bukevich A.V.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen H.X.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng N.
Cheng Y.D.
Chu M.C.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang J.H.
Fang K.
Feng C.F.
Feng H.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Ge T.T.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
Hannuksela O.A.
Hasan M.
He H.H.
He H.N.
He J.Y.
He Y.
Hor Y.K.
Hou B.W.
Hou C.
Hu H.B.
Hu Q.
Hu S.C.
Huang C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Y.Y.
Ji X.L.
Jia H.Y.
Jia K.
Jiang H.B.
Jiang K.
Jiang X.W.
Jiang Z.J.
Jin M.
Aharonian F.
Axikegu
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Bian W.
Bukevich A.V.
Cao Q.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen H.X.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen Y.
Cheng N.
Cheng Y.D.
Chu M.C.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang J.H.
Fang K.
Feng C.F.
Feng H.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Ge T.T.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
Hannuksela O.A.
Hasan M.
He H.H.
He H.N.
He J.Y.
He Y.
Hor Y.K.
Hou B.W.
Hou C.
Hu H.B.
Hu Q.
Hu S.C.
Huang C.
Huang D.H.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Y.Y.
Ji X.L.
Jia H.Y.
Jia K.
Jiang H.B.
Jiang K.
Jiang X.W.
Jiang Z.J.
Jin M.
Author's Affiliation
University of Chinese Academy of Sciences
Tsinghua University
Shanghai Jiao Tong University
Université Paris Cité
University of Science and Technology of China
Sun Yat-Sen University
Nanjing University
Shandong University
Chinese University of Hong Kong
Zhengzhou University
Southwest Jiaotong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
Guangzhou University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Hebei Normal University
Institute for Nuclear Research of the Russian Academy of Sciences
China Center of Advanced Science and Technology World Laboratory
Zhejiang Lab
Purple Mountain Observatory Chinese Academy of Sciences
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institiúid Ard-Lénn Bhaile Átha Cliath
Tibet University
State Key Laboratory of Particle Detection & Electronics
TIANFU Cosmic Ray Research Center
Tsinghua University
Shanghai Jiao Tong University
Université Paris Cité
University of Science and Technology of China
Sun Yat-Sen University
Nanjing University
Shandong University
Chinese University of Hong Kong
Zhengzhou University
Southwest Jiaotong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
Guangzhou University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Hebei Normal University
Institute for Nuclear Research of the Russian Academy of Sciences
China Center of Advanced Science and Technology World Laboratory
Zhejiang Lab
Purple Mountain Observatory Chinese Academy of Sciences
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institiúid Ard-Lénn Bhaile Átha Cliath
Tibet University
State Key Laboratory of Particle Detection & Electronics
TIANFU Cosmic Ray Research Center
Corresponding Author(s)
Other Contributor(s)
Abstract
The Water Cherenkov Detector Array (WCDA) is one of the components of Large High Altitude Air Shower Observatory (LHAASO) and can monitor any sources over two-thirds of the sky for up to 7 h per day with >98 per cent duty cycle. In this work, we report the detection of two outbursts of the Fanaroff–Riley I radio galaxy NGC 1275 that were detected by LHAASO-WCDA between 2022 November and 2023 January with statistical significance of 5.2σ and 8.3σ. The observed spectral energy distribution in the range from 500 GeV to 3 TeV is fitted by a power law with the best-fitting spectral index of α = −3.37 ± 0.52 and −3.35 ± 0.29, respectively. The outburst flux above 0.5 TeV was (4.55 ± 4.21) × 10<sup>−11</sup> cm<sup>−2</sup> s<sup>−1</sup> and (3.45 ± 1.78) × 10<sup>−11</sup> cm<sup>−2</sup> s<sup>−1</sup>, corresponding to 60 per cent and 45 per cent of Crab Nebula flux, respectively. Variation analysis reveals the variability time-scale of days at the TeV energy band. A simple test by one-zone synchrotron self-Compton model reproduces the data in the gamma-ray band well.
