Publication: Six-band k · p approach to the effects of doping on energy dispersion in p-type strained In<inf>0.15</inf>Ga<inf>0.85</inf>As-Al<inf>0.33</inf>Ga<inf>0.67</inf>As quantum-well structures
Submitted Date
Received Date
Accepted Date
Issued Date
2000-07-01
Copyright Date
Announcement No.
Application No.
Patent No.
Valid Date
Resource Type
Edition
Resource Version
Language
File Type
No. of Pages/File Size
ISBN
ISSN
00189197
eISSN
DOI
Scopus ID
WOS ID
Pubmed ID
arXiv ID
Call No.
Other identifier(s)
2-s2.0-0034228330
Journal Title
Volume
Issue
item.page.oaire.edition
Start Page
End Page
Access Rights
Access Status
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Physical Location
Bibliographic Citation
IEEE Journal of Quantum Electronics. Vol.36, No.7 (2000), 835-841
Citation
W. Shi, Dao Hua Zhang, Tanakorn Osotchan (2000). Six-band k · p approach to the effects of doping on energy dispersion in p-type strained In<inf>0.15</inf>Ga<inf>0.85</inf>As-Al<inf>0.33</inf>Ga<inf>0.67</inf>As quantum-well structures. Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/25938.
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Six-band k · p approach to the effects of doping on energy dispersion in p-type strained In<inf>0.15</inf>Ga<inf>0.85</inf>As-Al<inf>0.33</inf>Ga<inf>0.67</inf>As quantum-well structures
Alternative Title(s)
Author(s)
Author's Affiliation
Author's E-mail
Editor(s)
Editor's Affiliation
Corresponding Author(s)
Creator(s)
Compiler
Advisor(s)
Illustrator(s)
Applicant(s)
Inventor(s)
Issuer
Assignee
Series
Has Part
Abstract
We report an application of the six-band Luttinger-Kohn model to the subband energy dispersions in the valence band for the p-type In0.15Ga0.85As-Al0.33Ga0.67As quantum-well (QW) structures. It was found that, in addition to the conventional biaxial compressive strain related to the lattice constant and well width of the structures, the p-type doping also caused a shift of the subband energy levels in the valence band by varying the barrier height. It was also found that the strain of the QW structures was not a constant but was sensitive to the p-type doping intensity, which also induced the shift of the subband energy levels. The calculated results, based on intersubband transitions of the heavy holes and taking the doping-related changes in strain and barrier height into account, were in good agreement with the experimental data, measured using Fourier transform infrared technique.