Publication: Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from Parker Solar Probe
Submitted Date
Received Date
Accepted Date
Issued Date
2020-02-01
Copyright Date
Announcement No.
Application No.
Patent No.
Valid Date
Resource Type
Edition
Resource Version
Language
File Type
No. of Pages/File Size
ISBN
ISSN
00670049
eISSN
Scopus ID
WOS ID
Pubmed ID
arXiv ID
Call No.
Other identifier(s)
2-s2.0-85087356695
Journal Title
Volume
Issue
item.page.oaire.edition
Start Page
End Page
Access Rights
Access Status
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Physical Location
Bibliographic Citation
Astrophysical Journal, Supplement Series. Vol.246, No.2 (2020)
Citation
Riddhi Bandyopadhyay, M. L. Goldstein, B. A. Maruca, W. H. Matthaeus, T. N. Parashar, D. Ruffolo, R. Chhiber, A. Usmanov, A. Chasapis, R. Qudsi, Stuart D. Bale, J. W. Bonnell, Thierry Dudok De Wit, Keith Goetz, Peter R. Harvey, Robert J. MacDowall, David M. Malaspina, Marc Pulupa, J. C. Kasper, K. E. Korreck, A. W. Case, M. Stevens, P. Whittlesey, D. Larson, R. Livi, K. G. Klein, M. Velli, N. Raouafi (2020). Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from Parker Solar Probe. Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/57866.
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Enhanced Energy Transfer Rate in Solar Wind Turbulence Observed near the Sun from Parker Solar Probe
Alternative Title(s)
Author(s)
Riddhi Bandyopadhyay
M. L. Goldstein
B. A. Maruca
W. H. Matthaeus
T. N. Parashar
D. Ruffolo
R. Chhiber
A. Usmanov
A. Chasapis
R. Qudsi
Stuart D. Bale
J. W. Bonnell
Thierry Dudok De Wit
Keith Goetz
Peter R. Harvey
Robert J. MacDowall
David M. Malaspina
Marc Pulupa
J. C. Kasper
K. E. Korreck
A. W. Case
M. Stevens
P. Whittlesey
D. Larson
R. Livi
K. G. Klein
M. Velli
N. Raouafi
M. L. Goldstein
B. A. Maruca
W. H. Matthaeus
T. N. Parashar
D. Ruffolo
R. Chhiber
A. Usmanov
A. Chasapis
R. Qudsi
Stuart D. Bale
J. W. Bonnell
Thierry Dudok De Wit
Keith Goetz
Peter R. Harvey
Robert J. MacDowall
David M. Malaspina
Marc Pulupa
J. C. Kasper
K. E. Korreck
A. W. Case
M. Stevens
P. Whittlesey
D. Larson
R. Livi
K. G. Klein
M. Velli
N. Raouafi
Author's Affiliation
Author's E-mail
Editor(s)
Editor's Affiliation
Corresponding Author(s)
Creator(s)
Compiler
Advisor(s)
Illustrator(s)
Applicant(s)
Inventor(s)
Issuer
Assignee
Other Contributor(s)
Universite d'Orleans
University of Minnesota Twin Cities
Space Sciences Laboratory at UC Berkeley
University of California, Los Angeles
University of Michigan, Ann Arbor
University of California, Berkeley
University of Maryland, Baltimore County
Queen Mary, University of London
Johns Hopkins University Applied Physics Laboratory
Imperial College London
Mahidol University
The University of Arizona
Smithsonian Astrophysical Observatory
NASA Goddard Space Flight Center
The Bartol Research Institute
University of Colorado Boulder
University of Minnesota Twin Cities
Space Sciences Laboratory at UC Berkeley
University of California, Los Angeles
University of Michigan, Ann Arbor
University of California, Berkeley
University of Maryland, Baltimore County
Queen Mary, University of London
Johns Hopkins University Applied Physics Laboratory
Imperial College London
Mahidol University
The University of Arizona
Smithsonian Astrophysical Observatory
NASA Goddard Space Flight Center
The Bartol Research Institute
University of Colorado Boulder
Series
Has Part
Abstract
© 2020. The American Astronomical Society. All rights reserved.. Direct evidence of an inertial-range turbulent energy cascade has been provided by spacecraft observations in heliospheric plasmas. In the solar wind, the average value of the derived heating rate near 1 au is ∼103 Jkg-1s-1, an amount sufficient to account for observed departures from adiabatic expansion. Parker Solar Probe, even during its first solar encounter, offers the first opportunity to compute, in a similar fashion, a fluid-scale energy decay rate, much closer to the solar corona than any prior in situ observations. Using the Politano-Pouquet third-order law and the von Kármán decay law, we estimate the fluid-range energy transfer rate in the inner heliosphere, at heliocentric distance R ranging from 54 R o˙ (0.25 au) to 36 R o˙ (0.17 au). The energy transfer rate obtained near the first perihelion is about 100 times higher than the average value at 1 au, which is in agreement with estimates based on a heliospheric turbulence transport model. This dramatic increase in the heating rate is unprecedented in previous solar wind observations, including those from Helios, and the values are close to those obtained in the shocked plasma inside the terrestrial magnetosheath.