Publication: Potential of resveratrol in enrichment of neural progenitor-like cell induction of human stem cells from apical papilla
Submitted Date
Received Date
Accepted Date
Issued Date
2020-12-01
Copyright Date
Announcement No.
Application No.
Patent No.
Valid Date
Resource Type
Edition
Resource Version
Language
File Type
No. of Pages/File Size
ISBN
ISSN
17576512
eISSN
Scopus ID
WOS ID
Pubmed ID
arXiv ID
Call No.
Other identifier(s)
2-s2.0-85098476170
Journal Title
Volume
Issue
item.page.oaire.edition
Start Page
End Page
Access Rights
Access Status
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Physical Location
Bibliographic Citation
Stem Cell Research and Therapy. Vol.11, No.1 (2020)
Citation
Anupong Songsaad, Thanasup Gonmanee, Nisarat Ruangsawasdi, Chareerut Phruksaniyom, Charoensri Thonabulsombat (2020). Potential of resveratrol in enrichment of neural progenitor-like cell induction of human stem cells from apical papilla. Retrieved from: https://repository.li.mahidol.ac.th/handle/123456789/60874.
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Potential of resveratrol in enrichment of neural progenitor-like cell induction of human stem cells from apical papilla
Alternative Title(s)
Author's Affiliation
Author's E-mail
Editor(s)
Editor's Affiliation
Corresponding Author(s)
Creator(s)
Compiler
Advisor(s)
Illustrator(s)
Applicant(s)
Inventor(s)
Issuer
Assignee
Other Contributor(s)
Series
Has Part
Abstract
© 2020, The Author(s). Introduction: Stem cell transplantation of exogenous neural progenitor cells (NPCs) derived from mesenchymal stem cells (MSCs) has emerged as a promising approach for neurodegenerative disease. Human stem cells from apical papilla (hSCAPs) are derived from migratory neural crest stem cells and exhibit a potential of neuronal differentiation. However, their neuronal differentiation is low and unpredictable. Resveratrol has been described as a sirtuin 1 (SIRT1) activator which plays an important role in enhancing neuronal differentiation. In this study, we investigate the potential of resveratrol as an enhancer on neuronal differentiation through NPCs induction of hSCAPs. Methods: Stem cells were isolated from human apical papilla and characterized as MSCs. The cellular toxicity of resveratrol treatment to the characterized hSCAPs was investigated by MTT assay. The non-cellular toxicity concentrations of resveratrol were assessed with various pre-treatment times to select the optimal condition that highly expressed the neural progenitor gene, NES. Consequently, the optimal condition of resveratrol pre-treatment was synergistically performed with a neuronal induction medium to trigger neuronal differentiation. The differentiated cells were visualized, the genes profiling was quantified, and the percentage of neuronal differentiation was calculated. Moreover, the intracellular calcium oscillation was demonstrated. Results: The cellular toxicity of resveratrol was not observed for up to 50 μM for 12 h. Interestingly, hSCAPs pre-treated with 10 μM resveratrol for 12 h (RSV-hSCAPs) significantly expressed NES, which is determined as the optimal condition. Under neuronal induction, both of hSCAPs and RSV-hSCAPs were differentiated (d-hSCAPs and RSV-d-hSCAPs) as they exhibited neuronal-like appearances with Nissl substance staining. The highest expression of NES and SOX1 was observed in RSV-d-hSCAPs. Additionally, the percentage of neuronal differentiation of RSV-d-hSCAPs was significantly higher than d-hSCAPs for 4 times. Importantly, the neuronal-like cells exhibited slightly increasing pattern of calcium intensity. Conclusion: This study demonstrated that pre-treatment of resveratrol strongly induces neural progenitor marker gene expression which synergistically enhances neural progenitor-like cells’ induction with neuronal induction medium.