Broadband γ-Ray Spectrum of Supernova Remnant Cassiopeia A
Issued Date
2025-03-20
Resource Type
ISSN
20418205
eISSN
20418213
Scopus ID
2-s2.0-105000826702
Journal Title
Astrophysical Journal Letters
Volume
982
Issue
1
Rights Holder(s)
SCOPUS
Bibliographic Citation
Astrophysical Journal Letters Vol.982 No.1 (2025)
Suggested Citation
Cao Z., Aharonian F., Bai Y.X., Bao Y.W., Bastieri D., Bi X.J., Bi Y.J., Bian W., Bukevich A.V., Cai C.M., Cao W.Y., Cao Z., Chang J., Chang J.F., Chen A.M., Chen E.S., Chen H.X., Chen L., Chen L., Chen M.J., Chen M.L., Chen Q.H., Chen S., Chen S.H., Chen S.Z., Chen T.L., Chen X.B., Chen X.J., Chen Y., Cheng N., Cheng Y.D., Chu M.C., Cui M.Y., Cui S.W., Cui X.H., Cui Y.D., Dai B.Z., Dai H.L., Dai Z.G., Danzengluobu, Diao Y.X., Dong X.Q., Duan K.K., Fan J.H., Fan Y.Z., Fang J., Fang J.H., Fang K., Feng C.F., Feng H., Feng L., Feng S.H., Feng X.T., Feng Y., Feng Y.L., Gabici S., Gao B., Gao C.D., Gao Q., Gao W., Gao W.K., Ge M.M., Ge T.T., Geng L.S., Giacinti G., Gong G.H., Gou Q.B., Gu M.H., Guo F.L., Guo J., Guo X.L., Guo Y.Q., Guo Y.Y., Han Y.A., Hannuksela O.A., Hasan M., He H.H., He H.N., He J.Y., He X.Y., He Y., ndez-Cadena S.H., Hor Y.K., Hou B.W., Hou C., Hou X., Hu H.B., Hu S.C., Huang C., Huang D.H., Huang J.J., Huang T.Q., Huang W.J., Huang X.T., Huang X.Y., Huang Y., Huang Y.Y., Ji X.L., Jia H.Y., Jia K. Broadband γ-Ray Spectrum of Supernova Remnant Cassiopeia A. Astrophysical Journal Letters Vol.982 No.1 (2025). doi:10.3847/2041-8213/adb97c Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/108596
Title
Broadband γ-Ray Spectrum of Supernova Remnant Cassiopeia A
Author(s)
Cao Z.
Aharonian F.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Bian W.
Bukevich A.V.
Cai C.M.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen H.X.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen X.B.
Chen X.J.
Chen Y.
Cheng N.
Cheng Y.D.
Chu M.C.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Diao Y.X.
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang J.H.
Fang K.
Feng C.F.
Feng H.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Ge T.T.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
Hannuksela O.A.
Hasan M.
He H.H.
He H.N.
He J.Y.
He X.Y.
He Y.
ndez-Cadena S.H.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu S.C.
Huang C.
Huang D.H.
Huang J.J.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Y.Y.
Ji X.L.
Jia H.Y.
Jia K.
Aharonian F.
Bai Y.X.
Bao Y.W.
Bastieri D.
Bi X.J.
Bi Y.J.
Bian W.
Bukevich A.V.
Cai C.M.
Cao W.Y.
Cao Z.
Chang J.
Chang J.F.
Chen A.M.
Chen E.S.
Chen H.X.
Chen L.
Chen L.
Chen M.J.
Chen M.L.
Chen Q.H.
Chen S.
Chen S.H.
Chen S.Z.
Chen T.L.
Chen X.B.
Chen X.J.
Chen Y.
Cheng N.
Cheng Y.D.
Chu M.C.
Cui M.Y.
Cui S.W.
Cui X.H.
Cui Y.D.
Dai B.Z.
Dai H.L.
Dai Z.G.
Danzengluobu
Diao Y.X.
Dong X.Q.
Duan K.K.
Fan J.H.
Fan Y.Z.
Fang J.
Fang J.H.
Fang K.
Feng C.F.
Feng H.
Feng L.
Feng S.H.
Feng X.T.
Feng Y.
Feng Y.L.
Gabici S.
Gao B.
Gao C.D.
Gao Q.
Gao W.
Gao W.K.
Ge M.M.
Ge T.T.
Geng L.S.
Giacinti G.
Gong G.H.
Gou Q.B.
Gu M.H.
Guo F.L.
Guo J.
Guo X.L.
Guo Y.Q.
Guo Y.Y.
Han Y.A.
Hannuksela O.A.
Hasan M.
He H.H.
He H.N.
He J.Y.
He X.Y.
He Y.
ndez-Cadena S.H.
Hor Y.K.
Hou B.W.
Hou C.
Hou X.
Hu H.B.
Hu S.C.
Huang C.
Huang D.H.
Huang J.J.
Huang T.Q.
Huang W.J.
Huang X.T.
Huang X.Y.
Huang Y.
Huang Y.Y.
Ji X.L.
Jia H.Y.
Jia K.
Author's Affiliation
Zhejiang Lab
State Key Laboratory of Particle Detection & Electronics
Université Paris Cité
Yunnan Observatories
Yerevan State University
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
China Center of Advanced Science and Technology World Laboratory
Purple Mountain Observatory Chinese Academy of Sciences
Chinese University of Hong Kong
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
State Key Laboratory of Particle Detection & Electronics
Université Paris Cité
Yunnan Observatories
Yerevan State University
Nanjing University
Shanghai Astronomical Observatory Chinese Academy of Sciences
Institute for Nuclear Research of the Russian Academy of Sciences
Shandong University
Yunnan University
Institute of High Energy Physics, Chinese Academy of Sciences
University of Chinese Academy of Sciences
Guangzhou University
Tsinghua University
Shanghai Jiao Tong University
Sun Yat-Sen University
University of Science and Technology of China
Zhengzhou University
National Astronomical Observatories Chinese Academy of Sciences
Max-Planck-Institut für Kernphysik
Southwest Jiaotong University
China Center of Advanced Science and Technology World Laboratory
Purple Mountain Observatory Chinese Academy of Sciences
Chinese University of Hong Kong
Hebei Normal University
Tibet University
TIANFU Cosmic Ray Research Center
Corresponding Author(s)
Other Contributor(s)
Abstract
The core-collapse supernova remnant (SNR) Cassiopeia A (Cas A) is one of the brightest galactic radio sources with an angular radius of ~2.5 ¢ . Although no extension of this source has been detected in the γ-ray band, using more than 1000 days of LHAASO data above ∼0.8 TeV, we find that its spectrum is significantly softer than those obtained with Imaging Air Cherenkov Telescopes (IACTs), and its flux near ∼1 TeV is about 2 times higher. In combination with analyses of more than 16 yr of Fermi-LAT data covering 0.1 GeV–1 TeV, we find that the spectrum above 30 GeV deviates significantly from a single power law and is best described by a smoothly broken power law with a spectral index of 1.90 ± 0.15stat (3.41 ± 0.19stat) below (above) a break energy of 0.63 ± 0.21stat TeV. Given differences in the angular resolution of LHAASO-WCDA and IACTs, TeV γ-ray emission detected with LHAASO may have a significant contribution from regions surrounding the SNR illuminated by particles accelerated earlier, which, however, are treated as background by IACTs. Detailed modeling can be used to constrain the acceleration processes of TeV particles in the early stage of SNR evolution.