Publication: Identification of laticifer-specific genes and their promoter regions from a natural rubber producing plant Hevea brasiliensis
Issued Date
2014-01-01
Resource Type
ISSN
01689452
Other identifier(s)
2-s2.0-84901585475
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Plant Science. Vol.225, (2014), 1-8
Suggested Citation
Yuichi Aoki, Seiji Takahashi, Daisuke Takayama, Yoshiyuki Ogata, Nozomu Sakurai, Hideyuki Suzuki, Kasem Asawatreratanakul, Dhirayos Wititsuwannakul, Rapepun Wititsuwannakul, Daisuke Shibata, Tanetoshi Koyama, Toru Nakayama Identification of laticifer-specific genes and their promoter regions from a natural rubber producing plant Hevea brasiliensis. Plant Science. Vol.225, (2014), 1-8. doi:10.1016/j.plantsci.2014.05.003 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/33162
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Identification of laticifer-specific genes and their promoter regions from a natural rubber producing plant Hevea brasiliensis
Abstract
Latex, the milky cytoplasm of highly differentiated cells called laticifers, from Hevea brasiliensis is a key source of commercial natural rubber production. One way to enhance natural rubber production would be to express genes involved in natural rubber biosynthesis by a laticifer-specific overexpression system. As a first step to identify promoters which could regulate the laticifer-specific expression, we identified random clones from a cDNA library of H. brasiliensis latex, resulting in 4325 expressed sequence tags (ESTs) assembled into 1308 unigenes (692 contigs and 617 singletons). Quantitative analyses of the transcription levels of high redundancy clones in the ESTs revealed genes highly and predominantly expressed in laticifers, such as Rubber Elongation Factor (REF), Small Rubber Particle Protein and putative protease inhibitor proteins. HRT1 and HRT2, cis-prenyltransferases involved in rubber biosynthesis, was also expressed predominantly in laticifers, although these transcript levels were 80-fold lower than that of REF. The 5'-upstream regions of these laticifer-specific genes were cloned and analyzed in silico, revealing seven common motifs consisting of eight bases. Furthermore, transcription factors specifically expressed in laticifers were also identified. The common motifs in the laticifer-specific genes and the laticifer-specific transcription factors are potentially involved in the regulation of gene expression in laticifers. © 2014 Elsevier Ireland Ltd.