Publication: Hydroxyl-terminated saponified natural rubber based on the h<inf>2</inf>o<inf>2</inf>/p25-tio<inf>2</inf> powder/uvc-irradiation system
Issued Date
2021-04-02
Resource Type
ISSN
20734360
Other identifier(s)
2-s2.0-85105173042
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
Polymers. Vol.13, No.8 (2021)
Suggested Citation
Supinya Nijpanich, Adun Nimpaiboon, Porntip Rojruthai, Jitladda Sakdapipanich Hydroxyl-terminated saponified natural rubber based on the h<inf>2</inf>o<inf>2</inf>/p25-tio<inf>2</inf> powder/uvc-irradiation system. Polymers. Vol.13, No.8 (2021). doi:10.3390/polym13081319 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/76615
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Hydroxyl-terminated saponified natural rubber based on the h<inf>2</inf>o<inf>2</inf>/p25-tio<inf>2</inf> powder/uvc-irradiation system
Abstract
Natural rubber (NR), a long-chain hydrocarbon polymer mostly consisting of cis-1,4-polyisoprene units, has a high molecular weight (MW) and viscosity, enabling it to show excellent physical properties. However, NR has no reactive functional group, making it difficult to react with other molecules, especially in manufacturing processes. The functionalized low-molecular-weight NR (FLNR) is a requirement to disperse ingredients into the rubber adequately. Here, the FLNR was prepared by a photochemical degradation process under UVC-irradiation in the presence of H2O2 using P25-titanium oxide (TiO2 ) powder as a photocatalyst. The optimum condition for the preparation of FLNR was the use of 2.0 g of TiO2 powder per 100 g of rubber and H2O2 at 20% w/w under UVC-irradiation for 5 h. The hydroxyl groups were found on the NR chains due to the chain-scission of polyisoprene chains and hydroxyl radicals in the system. The weight average MW of NR decreased from 12.6 × 105 to 0.6 × 105 gmol−1, while the number average MW decreased from 3.3 × 105 to 0.1 × 105 gmol−1 .