Assessment of Biofilm Formation by Candida albicans Strains Isolated from Hemocultures and Their Role in Pathogenesis in the Zebrafish Model
Issued Date
2022-10-01
Resource Type
eISSN
2309608X
Scopus ID
2-s2.0-85140875263
Journal Title
Journal of Fungi
Volume
8
Issue
10
Rights Holder(s)
SCOPUS
Bibliographic Citation
Journal of Fungi Vol.8 No.10 (2022)
Suggested Citation
Pokhrel S., Boonmee N., Tulyaprawat O., Pharkjaksu S., Thaipisutikul I., Chairatana P., Ngamskulrungroj P., Mitrpant C. Assessment of Biofilm Formation by Candida albicans Strains Isolated from Hemocultures and Their Role in Pathogenesis in the Zebrafish Model. Journal of Fungi Vol.8 No.10 (2022). doi:10.3390/jof8101014 Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/83117
Title
Assessment of Biofilm Formation by Candida albicans Strains Isolated from Hemocultures and Their Role in Pathogenesis in the Zebrafish Model
Author's Affiliation
Other Contributor(s)
Abstract
Candida albicans, an opportunistic pathogen, has the ability to form biofilms in the host or within medical devices in the body. Biofilms have been associated with disseminated/invasive disease with increased severity of infection by disrupting the host immune response and prolonging antifungal treatment. In this study, the in vivo virulence of three strains with different biofilm formation strengths, that is, non-, weak-, and strong biofilm formers, was evaluated using the zebrafish model. The survival assay and fungal tissue burden were measured. Biofilm-related gene expressions were also investigated. The survival of zebrafish, inoculated with strong biofilms forming C. albicans,, was significantly shorter than strains without biofilms forming C. albicans. However, there were no statistical differences in the burden of viable colonogenic cell number between the groups of the three strains tested. We observed that the stronger the biofilm formation, the higher up-regulation of biofilm-associated genes. The biofilm-forming strain (140 and 57), injected into zebrafish larvae, possessed a higher level of expression of genes associated with adhesion, attachment, filamentation, and cell proliferation, including eap1, als3, hwp1, bcr1, and mkc1 at 8 h. The results suggested that, despite the difference in genetic background, biofilm formation is an important virulence factor for the pathogenesis of C. albicans. However, the association between biofilm formation strength and in vivo virulence is controversial and needs to be further studied.