Localized creation of yellow single photon emitting carbon complexes in hexagonal boron nitride

dc.contributor.authorKumar A.
dc.contributor.authorCholsuk C.
dc.contributor.authorZand A.
dc.contributor.authorMishuk M.N.
dc.contributor.authorMatthes T.
dc.contributor.authorEilenberger F.
dc.contributor.authorSuwanna S.
dc.contributor.authorVogl T.
dc.contributor.otherMahidol University
dc.date.accessioned2023-07-23T18:01:24Z
dc.date.available2023-07-23T18:01:24Z
dc.date.issued2023-07-01
dc.description.abstractSingle photon emitters in solid-state crystals have received a lot of attention as building blocks for numerous quantum technology applications. Fluorescent defects in hexagonal boron nitride (hBN) stand out due to their high luminosity and robust operation at room temperature. The fabrication of identical emitters at pre-defined sites is still challenging, which hampers the integration of these defects in optical systems and electro-optical devices. Here, we demonstrate the localized fabrication of hBN emitter arrays by electron beam irradiation using a standard scanning electron microscope with deep sub-micron lateral precision. The emitters are created with a high yield and a reproducible spectrum peaking at 575 nm. Our measurements of optically detected magnetic resonance have not revealed any addressable spin states. Using density functional theory, we attribute the experimentally observed emission lines to carbon-related defects, which are activated by the electron beam. Our scalable approach provides a promising pathway for fabricating room temperature single photon emitters in integrated quantum devices.
dc.identifier.citationAPL Materials Vol.11 No.7 (2023)
dc.identifier.doi10.1063/5.0147560
dc.identifier.eissn2166532X
dc.identifier.scopus2-s2.0-85164806042
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/88041
dc.rights.holderSCOPUS
dc.subjectEngineering
dc.titleLocalized creation of yellow single photon emitting carbon complexes in hexagonal boron nitride
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85164806042&origin=inward
oaire.citation.issue7
oaire.citation.titleAPL Materials
oaire.citation.volume11
oairecerif.author.affiliationFriedrich-Schiller-Universität Jena
oairecerif.author.affiliationMahidol University
oairecerif.author.affiliationFraunhofer-Institut für Angewandte Optik und Feinmechanik in Jena
oairecerif.author.affiliationMax Planck School of Photonics

Files

Collections