PseudoCell: Hard Negative Mining as Pseudo Labeling for Deep Learning-Based Centroblast Cell Detection

dc.contributor.authorSeesawad N.
dc.contributor.authorIttichaiwong P.
dc.contributor.authorSudhawiyangkul T.
dc.contributor.authorSawangjai P.
dc.contributor.authorThuwajit P.
dc.contributor.authorBoonsakan P.
dc.contributor.authorSripodok S.
dc.contributor.authorVeerakanjana K.
dc.contributor.authorCharngkaew K.
dc.contributor.authorPongpaibul A.
dc.contributor.authorAngkathunyakul N.
dc.contributor.authorHnoohom N.
dc.contributor.authorYuenyong S.
dc.contributor.authorThuwajit C.
dc.contributor.authorWilaiprasitporn T.
dc.contributor.correspondenceSeesawad N.
dc.contributor.otherMahidol University
dc.date.accessioned2024-06-08T18:16:16Z
dc.date.available2024-06-08T18:16:16Z
dc.date.issued2024-01-01
dc.description.abstract<italic>Background:</italic> Deep learning models for patch classification in whole-slide images (WSI) have shown promise in assisting follicular lymphoma grading. However, these models often require pathologists to identify centroblasts and manually provide refined labels for model optimization. <italic>Objective:</italic> To address this limitation, we propose <italic>PseudoCell</italic>, an object detection framework for automated centroblast detection in WSI, eliminating the need for extensive pathologist&#x0027;s refined labels. <italic>Methods:</italic> <italic>PseudoCell</italic> leverages a combination of pathologist-provided centroblast labels and pseudo-negative labels generated from undersampled false-positive predictions based on cell morphology features. This approach reduces the reliance on time-consuming manual annotations. <italic>Results:</italic> Our framework significantly reduces the workload for pathologists by accurately identifying and narrowing down areas of interest containing centroblasts. Depending on the confidence threshold, <italic>PseudoCell</italic> can eliminate 58.18-99.35&#x0025; of irrelevant tissue areas on WSI, streamlining the diagnostic process. <italic>Conclusion:</italic> This study presents <italic>PseudoCell</italic> as a practical and efficient prescreening method for centroblast detection, eliminating the need for refined labels from pathologists. The discussion section&#x00A0;provides detailed guidance for implementing <italic>PseudoCell</italic> in clinical practice.
dc.identifier.citationIEEE Open Journal of Engineering in Medicine and Biology (2024)
dc.identifier.doi10.1109/OJEMB.2024.3407351
dc.identifier.eissn26441276
dc.identifier.scopus2-s2.0-85194834959
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/20.500.14594/98649
dc.rights.holderSCOPUS
dc.subjectEngineering
dc.titlePseudoCell: Hard Negative Mining as Pseudo Labeling for Deep Learning-Based Centroblast Cell Detection
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85194834959&origin=inward
oaire.citation.titleIEEE Open Journal of Engineering in Medicine and Biology
oairecerif.author.affiliationSiriraj Hospital
oairecerif.author.affiliationVidyasirimedhi Institute of Science and Technology
oairecerif.author.affiliationFaculty of Medicine Ramathibodi Hospital, Mahidol University
oairecerif.author.affiliationMahidol University

Files

Collections