PseudoCell: Hard Negative Mining as Pseudo Labeling for Deep Learning-Based Centroblast Cell Detection
dc.contributor.author | Seesawad N. | |
dc.contributor.author | Ittichaiwong P. | |
dc.contributor.author | Sudhawiyangkul T. | |
dc.contributor.author | Sawangjai P. | |
dc.contributor.author | Thuwajit P. | |
dc.contributor.author | Boonsakan P. | |
dc.contributor.author | Sripodok S. | |
dc.contributor.author | Veerakanjana K. | |
dc.contributor.author | Charngkaew K. | |
dc.contributor.author | Pongpaibul A. | |
dc.contributor.author | Angkathunyakul N. | |
dc.contributor.author | Hnoohom N. | |
dc.contributor.author | Yuenyong S. | |
dc.contributor.author | Thuwajit C. | |
dc.contributor.author | Wilaiprasitporn T. | |
dc.contributor.correspondence | Seesawad N. | |
dc.contributor.other | Mahidol University | |
dc.date.accessioned | 2024-06-08T18:16:16Z | |
dc.date.available | 2024-06-08T18:16:16Z | |
dc.date.issued | 2024-01-01 | |
dc.description.abstract | <italic>Background:</italic> Deep learning models for patch classification in whole-slide images (WSI) have shown promise in assisting follicular lymphoma grading. However, these models often require pathologists to identify centroblasts and manually provide refined labels for model optimization. <italic>Objective:</italic> To address this limitation, we propose <italic>PseudoCell</italic>, an object detection framework for automated centroblast detection in WSI, eliminating the need for extensive pathologist's refined labels. <italic>Methods:</italic> <italic>PseudoCell</italic> leverages a combination of pathologist-provided centroblast labels and pseudo-negative labels generated from undersampled false-positive predictions based on cell morphology features. This approach reduces the reliance on time-consuming manual annotations. <italic>Results:</italic> Our framework significantly reduces the workload for pathologists by accurately identifying and narrowing down areas of interest containing centroblasts. Depending on the confidence threshold, <italic>PseudoCell</italic> can eliminate 58.18-99.35% of irrelevant tissue areas on WSI, streamlining the diagnostic process. <italic>Conclusion:</italic> This study presents <italic>PseudoCell</italic> as a practical and efficient prescreening method for centroblast detection, eliminating the need for refined labels from pathologists. The discussion section provides detailed guidance for implementing <italic>PseudoCell</italic> in clinical practice. | |
dc.identifier.citation | IEEE Open Journal of Engineering in Medicine and Biology (2024) | |
dc.identifier.doi | 10.1109/OJEMB.2024.3407351 | |
dc.identifier.eissn | 26441276 | |
dc.identifier.scopus | 2-s2.0-85194834959 | |
dc.identifier.uri | https://repository.li.mahidol.ac.th/handle/20.500.14594/98649 | |
dc.rights.holder | SCOPUS | |
dc.subject | Engineering | |
dc.title | PseudoCell: Hard Negative Mining as Pseudo Labeling for Deep Learning-Based Centroblast Cell Detection | |
dc.type | Article | |
mu.datasource.scopus | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85194834959&origin=inward | |
oaire.citation.title | IEEE Open Journal of Engineering in Medicine and Biology | |
oairecerif.author.affiliation | Siriraj Hospital | |
oairecerif.author.affiliation | Vidyasirimedhi Institute of Science and Technology | |
oairecerif.author.affiliation | Faculty of Medicine Ramathibodi Hospital, Mahidol University | |
oairecerif.author.affiliation | Mahidol University |