Using Deep Learning to Segment Retinal Vascular Leakage and Occlusion in Retinal Vasculitis

dc.contributor.authorDhirachaikulpanich D.
dc.contributor.authorXie J.
dc.contributor.authorChen X.
dc.contributor.authorLi X.
dc.contributor.authorMadhusudhan S.
dc.contributor.authorZheng Y.
dc.contributor.authorBeare N.A.V.
dc.contributor.correspondenceDhirachaikulpanich D.
dc.contributor.otherMahidol University
dc.date.accessioned2024-02-08T18:13:52Z
dc.date.available2024-02-08T18:13:52Z
dc.date.issued2024-01-01
dc.description.abstractPurpose: Retinal vasculitis (RV) is characterised by retinal vascular leakage, occlusion or both on fluorescein angiography (FA). There is no standard scheme available to segment RV features. We aimed to develop a deep learning model to segment both vascular leakage and occlusion in RV. Methods: Four hundred and sixty-three FA images from 82 patients with retinal vasculitis were used to develop a deep learning model, in 60:20:20 ratio for training:validation:testing. Parameters, including deep learning architectures (DeeplabV3+, UNet++ and UNet), were altered to find the best binary segmentation model separately for retinal vascular leakage and occlusion, using a Dice score to determine the reliability of each model. Results: Our best model for vascular leakage had a Dice score of 0.6279 (95% confidence interval (CI) 0.5584–0.6974). For occlusion, the best model achieved a Dice score of 0.6992 (95% CI 0.6109–0.7874). Conclusion: Our RV segmentation models could perform reliable segmentation for retinal vascular leakage and occlusion in FAs of RV patients.
dc.identifier.citationOcular Immunology and Inflammation (2024)
dc.identifier.doi10.1080/09273948.2024.2305185
dc.identifier.eissn17445078
dc.identifier.issn09273948
dc.identifier.scopus2-s2.0-85183009552
dc.identifier.urihttps://repository.li.mahidol.ac.th/handle/123456789/95784
dc.rights.holderSCOPUS
dc.subjectMedicine
dc.titleUsing Deep Learning to Segment Retinal Vascular Leakage and Occlusion in Retinal Vasculitis
dc.typeArticle
mu.datasource.scopushttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85183009552&origin=inward
oaire.citation.titleOcular Immunology and Inflammation
oairecerif.author.affiliationSiriraj Hospital
oairecerif.author.affiliationLiverpool University Hospitals NHS Foundation Trust
oairecerif.author.affiliationPeking University People's Hospital
oairecerif.author.affiliationLiverpool Heart and Chest Hospital
oairecerif.author.affiliationUniversity of Liverpool
oairecerif.author.affiliationXiamen University

Files

Collections