Publication: Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: a population-based machine learning study
Issued Date
2020-07-01
Resource Type
ISSN
25897500
Other identifier(s)
2-s2.0-85086706974
Rights
Mahidol University
Rights Holder(s)
SCOPUS
Bibliographic Citation
The Lancet Digital Health. Vol.2, No.7 (2020), e368-e375
Suggested Citation
Russell Fung, Jose Villar, Ali Dashti, Leila Cheikh Ismail, Eleonora Staines-Urias, Eric O. Ohuma, Laurent J. Salomon, Cesar G. Victora, Fernando C. Barros, Ann Lambert, Maria Carvalho, Yasmin A. Jaffer, J. Alison Noble, Michael G. Gravett, Manorama Purwar, Ruyan Pang, Enrico Bertino, Shama Munim, Aung Myat Min, Rose McGready, Shane A. Norris, Zulfiqar A. Bhutta, Stephen H. Kennedy, Aris T. Papageorghiou, Abbas Ourmazd, S. E. Abbott, A. Abubakar, J. Acedo, I. Ahmed, F. Al-Aamri, J. Al-Abduwani, J. Al-Abri, D. Alam, E. Albernaz, H. Algren, F. Al-Habsi, M. Alija, H. Al-Jabri, H. Al-Lawatiya, B. Al-Rashidiya, D. G. Altman, W. K. Al-Zadjali, H. F. Andersen, L. Aranzeta, S. Ash, M. Baricco, F. C. Barros, H. Barsosio, C. Batiuk, M. Batra, J. Berkley, E. Bertino, M. K. Bhan, B. A. Bhat, I. Blakey, S. Bornemeier, A. Bradman, M. Buckle, O. Burnham, F. Burton, A. Capp, V. I. Cararra, R. Carew, V. I. Carrara, A. A. Carter, M. Carvalho, P. Chamberlain, Ismail L. Cheikh, L. Cheikh Ismail, A. Choudhary, S. Choudhary, W. C. Chumlea, C. Condon, L. A. Corra, C. Cosgrove, R. Craik, M. F. da Silveira, D. Danelon, T. de Wet, E. de Leon, S. Deshmukh, G. Deutsch, J. Dhami, Nicola P. Di, M. Dighe, H. Dolk, M. Domingues, D. Dongaonkar, D. Enquobahrie, B. Eskenazi, F. Farhi, M. Fernandes, D. Finkton, S. Fonseca, I. O. Frederick, M. Frigerio, P. Gaglioti, C. Garza Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: a population-based machine learning study. The Lancet Digital Health. Vol.2, No.7 (2020), e368-e375. doi:10.1016/S2589-7500(20)30131-X Retrieved from: https://repository.li.mahidol.ac.th/handle/20.500.14594/57837
Research Projects
Organizational Units
Authors
Journal Issue
Thesis
Title
Achieving accurate estimates of fetal gestational age and personalised predictions of fetal growth based on data from an international prospective cohort study: a population-based machine learning study
Author(s)
Russell Fung
Jose Villar
Ali Dashti
Leila Cheikh Ismail
Eleonora Staines-Urias
Eric O. Ohuma
Laurent J. Salomon
Cesar G. Victora
Fernando C. Barros
Ann Lambert
Maria Carvalho
Yasmin A. Jaffer
J. Alison Noble
Michael G. Gravett
Manorama Purwar
Ruyan Pang
Enrico Bertino
Shama Munim
Aung Myat Min
Rose McGready
Shane A. Norris
Zulfiqar A. Bhutta
Stephen H. Kennedy
Aris T. Papageorghiou
Abbas Ourmazd
S. E. Abbott
A. Abubakar
J. Acedo
I. Ahmed
F. Al-Aamri
J. Al-Abduwani
J. Al-Abri
D. Alam
E. Albernaz
H. Algren
F. Al-Habsi
M. Alija
H. Al-Jabri
H. Al-Lawatiya
B. Al-Rashidiya
D. G. Altman
W. K. Al-Zadjali
H. F. Andersen
L. Aranzeta
S. Ash
M. Baricco
F. C. Barros
H. Barsosio
C. Batiuk
M. Batra
J. Berkley
E. Bertino
M. K. Bhan
B. A. Bhat
I. Blakey
S. Bornemeier
A. Bradman
M. Buckle
O. Burnham
F. Burton
A. Capp
V. I. Cararra
R. Carew
V. I. Carrara
A. A. Carter
M. Carvalho
P. Chamberlain
Ismail L. Cheikh
L. Cheikh Ismail
A. Choudhary
S. Choudhary
W. C. Chumlea
C. Condon
L. A. Corra
C. Cosgrove
R. Craik
M. F. da Silveira
D. Danelon
T. de Wet
E. de Leon
S. Deshmukh
G. Deutsch
J. Dhami
Nicola P. Di
M. Dighe
H. Dolk
M. Domingues
D. Dongaonkar
D. Enquobahrie
B. Eskenazi
F. Farhi
M. Fernandes
D. Finkton
S. Fonseca
I. O. Frederick
M. Frigerio
P. Gaglioti
C. Garza
Jose Villar
Ali Dashti
Leila Cheikh Ismail
Eleonora Staines-Urias
Eric O. Ohuma
Laurent J. Salomon
Cesar G. Victora
Fernando C. Barros
Ann Lambert
Maria Carvalho
Yasmin A. Jaffer
J. Alison Noble
Michael G. Gravett
Manorama Purwar
Ruyan Pang
Enrico Bertino
Shama Munim
Aung Myat Min
Rose McGready
Shane A. Norris
Zulfiqar A. Bhutta
Stephen H. Kennedy
Aris T. Papageorghiou
Abbas Ourmazd
S. E. Abbott
A. Abubakar
J. Acedo
I. Ahmed
F. Al-Aamri
J. Al-Abduwani
J. Al-Abri
D. Alam
E. Albernaz
H. Algren
F. Al-Habsi
M. Alija
H. Al-Jabri
H. Al-Lawatiya
B. Al-Rashidiya
D. G. Altman
W. K. Al-Zadjali
H. F. Andersen
L. Aranzeta
S. Ash
M. Baricco
F. C. Barros
H. Barsosio
C. Batiuk
M. Batra
J. Berkley
E. Bertino
M. K. Bhan
B. A. Bhat
I. Blakey
S. Bornemeier
A. Bradman
M. Buckle
O. Burnham
F. Burton
A. Capp
V. I. Cararra
R. Carew
V. I. Carrara
A. A. Carter
M. Carvalho
P. Chamberlain
Ismail L. Cheikh
L. Cheikh Ismail
A. Choudhary
S. Choudhary
W. C. Chumlea
C. Condon
L. A. Corra
C. Cosgrove
R. Craik
M. F. da Silveira
D. Danelon
T. de Wet
E. de Leon
S. Deshmukh
G. Deutsch
J. Dhami
Nicola P. Di
M. Dighe
H. Dolk
M. Domingues
D. Dongaonkar
D. Enquobahrie
B. Eskenazi
F. Farhi
M. Fernandes
D. Finkton
S. Fonseca
I. O. Frederick
M. Frigerio
P. Gaglioti
C. Garza
Other Contributor(s)
Ministry of Health Oman
University of Sharjah
Aga Khan Hospital Nairobi
The Aga Khan University
Shoklo Malaria Research Unit
Hospital for Sick Children University of Toronto
Hôpital Necker Enfants Malades
Green Templeton College
University of Oxford
Universidade Catolica de Pelotas
University of Wisconsin-Milwaukee
University of Witwatersrand
University of Washington, Seattle
Peking University
Universidade Federal de Pelotas
Università degli Studi di Torino
Nuffield Department of Medicine
University of Oxford Medical Sciences Division
Ketkar Hospital
University of Sharjah
Aga Khan Hospital Nairobi
The Aga Khan University
Shoklo Malaria Research Unit
Hospital for Sick Children University of Toronto
Hôpital Necker Enfants Malades
Green Templeton College
University of Oxford
Universidade Catolica de Pelotas
University of Wisconsin-Milwaukee
University of Witwatersrand
University of Washington, Seattle
Peking University
Universidade Federal de Pelotas
Università degli Studi di Torino
Nuffield Department of Medicine
University of Oxford Medical Sciences Division
Ketkar Hospital
Abstract
© 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: Preterm birth is a major global health challenge, the leading cause of death in children under 5 years of age, and a key measure of a population's general health and nutritional status. Current clinical methods of estimating fetal gestational age are often inaccurate. For example, between 20 and 30 weeks of gestation, the width of the 95% prediction interval around the actual gestational age is estimated to be 18–36 days, even when the best ultrasound estimates are used. The aims of this study are to improve estimates of fetal gestational age and provide personalised predictions of future growth. Methods: Using ultrasound-derived, fetal biometric data, we developed a machine learning approach to accurately estimate gestational age. The accuracy of the method is determined by reference to exactly known facts pertaining to each fetus—specifically, intervals between ultrasound visits—rather than the date of the mother's last menstrual period. The data stem from a sample of healthy, well-nourished participants in a large, multicentre, population-based study, the International Fetal and Newborn Growth Consortium for the 21st Century (INTERGROWTH-21st). The generalisability of the algorithm is shown with data from a different and more heterogeneous population (INTERBIO-21st Fetal Study). Findings: In the context of two large datasets, we estimated gestational age between 20 and 30 weeks of gestation with 95% confidence to within 3 days, using measurements made in a 10-week window spanning the second and third trimesters. Fetal gestational age can thus be estimated in the 20–30 weeks gestational age window with a prediction interval 3–5 times better than with any previous algorithm. This will enable improved management of individual pregnancies. 6-week forecasts of the growth trajectory for a given fetus are accurate to within 7 days. This will help identify at-risk fetuses more accurately than currently possible. At population level, the higher accuracy is expected to improve fetal growth charts and population health assessments. Interpretation: Machine learning can circumvent long-standing limitations in determining fetal gestational age and future growth trajectory, without recourse to often inaccurately known information, such as the date of the mother's last menstrual period. Using this algorithm in clinical practice could facilitate the management of individual pregnancies and improve population-level health. Upon publication of this study, the algorithm for gestational age estimates will be provided for research purposes free of charge via a web portal. Funding: Bill & Melinda Gates Foundation, Office of Science (US Department of Energy), US National Science Foundation, and National Institute for Health Research Oxford Biomedical Research Centre.